Integral Calculus

Chris Palmer, July 9th, 2024

(Derivatives->) Integrals to remember Indefinite integrals

- Polynomials
 - $f(x) = ax^n$
- Sine/Cosine
 - $g(t) = A \sin(\omega t)$
 - $h(\omega) = B\cos(\omega t)$
- Exponential

•
$$l(T) = l_0 e^{aT}$$

- Logarithms
 - $k(s) = k_0 \ln(s)$

$$\int \left(x^2 + 10x\right) dx$$

$$\int (\sinh x) \, dx$$

$$\int \left(\frac{1}{x^2}\right) dx$$

Integration —> The Area Under Curve

- The first way you learned this was to sum up chunks and make the integration component infinitesimal.
- Riemann sum —>integral
 - $\Delta x > dx$

Fundamental Theorem of Calculus

• Do you recall?

Fundamental Theorem of Calculus

Integrals and derivatives are anti-functions

Definite Integrals

•
$$\int_{x=x_0}^{x=x_f} g(x) \, dx = \text{value}$$

- The output will be evaluated at both ends.
- If it is a value that you for the end points, you'll get a number.
- If your end points are variables, you get a function.
- Usually just the final end point is a variable and the initial point is a defined value.

Product rule — > Integration by parts

•
$$h(x) = f(x)g(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g + f$

• $d(uv) = du \cdot v + u \cdot dv \longrightarrow u \cdot dv = d(uv) - v \cdot du$

 $f \frac{dg}{dg}$ dx

Product rule — > Integration by parts

•
$$h(x) = f(x)g(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g + f\frac{dg}{dx}$

• $d(uv) = du \cdot v + u \cdot dv \longrightarrow u \cdot dv = d(uv) - v \cdot du$

$$\int x \sin x \, dx = ?$$
$$\int x^2 e^{-ax} \, dx = ?$$
$$\int \sin(x) e^{-ax} \, dx = ?$$

Product rule — > Integration by parts

• $d(uv) = du \cdot v + u \cdot dv \longrightarrow v \cdot du = d(uv) - u \cdot dv$

•
$$\int_{x=0}^{x=\infty} xe^{-x}dx = ?$$

•
$$\int_{x=0}^{x=\infty} \frac{\sin x}{x}dx = ? \text{ complex analys}$$

sis?

Substitution

• Making a substitution in order to simplify an integral.

• E.g.
$$u = f(x); du = \frac{df}{dx}dx$$

• Where the $\frac{df}{dx}$ is part of the integrand.

$$\int \cos^2 x \sin x dx$$

$$\int \frac{x}{\left(x^2 + 1\right)} dx$$

$$\int_{t=0}^{t=2} t \sin(t^2) dt$$

Partial Fractions

denominator and splitting into separate functions.

•
$$\int_{t=1}^{t=3} \frac{23-t}{(t-5)(t+4)} dt = ?$$

Sometimes impossible looking integrals can be done by factorization of the