Differential Calculus

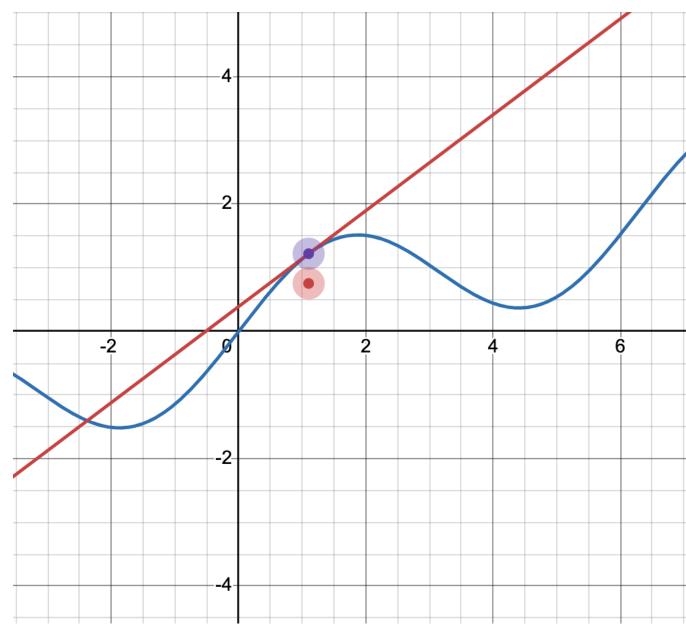
Chris Palmer, July 9th, 2024

Definition with limits

 When you first learn derivatives you had to use this (and find a way to factor out h from the numerator) to compute derivatives.

•
$$\frac{df}{dx}(x=a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- This relates directly to the graphical definition of the slope of the tangent line at x = a.
- One should always be able to start from an infinite table of numbers and draw an infinite number of derivatives.
 - No model needed.



https://www.desmos.com/calculator/4pf1dxxzq2

Derivative to remember

• Polynomials

•
$$f(x) = ax^n$$
 $\frac{df}{dx} = ?$

• Sine/Cosine

•
$$g(t) = A \sin(\omega t)$$
 $\frac{dg}{dt} = ?$

•
$$h(\omega) = B\cos(\omega t)$$
 $\frac{dh}{d\omega} = ?$

• Exponential

$$l(T) = l_0 e^{aT} \qquad \frac{dl}{dT} = ?$$

Logarithms

•
$$k(s) = k_0 \ln(s)$$
 $\frac{dk}{ds} = ?$

Derivative to remember

Polynomials

•
$$f(x) = ax^n$$
 $\frac{df}{dx} = anx^{n-1}$

• Sine/Cosine

•
$$g(t) = A \sin(\omega t)$$

•
$$h(\omega) = B\cos(\omega t)$$

$$\frac{dg}{dt} = A\omega\cos(\omega t)$$
$$\frac{dh}{d\omega} = -Bt\sin(\omega t)$$

• Exponential

•
$$l(T) = l_0 e^{aT}$$

$$\frac{dl}{dT} = l_0 a e^{aT}$$

• Logarithms

•
$$k(s) = k_0 \ln(s)$$
 $\frac{dk}{ds} = \frac{k_0}{s}$

$$f(x) = \sqrt{x}$$
$$g(t) = \left(\frac{1}{2}\right)^{t}$$
$$h(\omega) = \frac{10}{\omega^{3}}$$
$$L(I) = 10\log\left(\frac{I}{I_{0}}\right)$$

Chain rule

- Peel away the functions like layers on an onion.
 - f(x) = g(h(x)); $\frac{df}{dx} = \frac{dg}{dh}\frac{dh}{dx}$

Chain rule

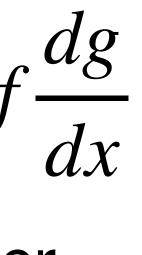
- Peel away the functions like layers on an onion.
 - f(x) = g(h(x)); $\frac{df}{dx} = \frac{dg}{dh}\frac{dh}{dx}$

•
$$f(t) = \sin\left(e^{At}\right)$$

- What are g and h? Compute the derivative.
- Got time? $h(x) = \ln(\sqrt{x^2 + 1})$

•
$$h(x) = f(x)g(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g + f$

• Explain that in words to your partner.



•
$$h(x) = f(x)g(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g + f$

• Explain that in words to your partner.

Let's say that
$$h(x) = \frac{f(x)}{g(x)}$$
; use the

• Hint: you need the chain rule too.

 $f \frac{dg}{dg}$ dx

e product rule to derive the "quotient rule".

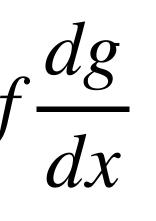
•
$$h(x) = f(x)g(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g + f$

• Take turns working through these with a partner.

•
$$h(x) = (x^2 - 4)(x^3 + x)$$

•
$$y = y_0 \tan x$$

$$P(t) = \frac{Ae^{-at}}{t^2 - 3}$$



•
$$h(x) = f(x)g(x)k(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g(x)g(x)k(x)$

• Explain that in words again.

 $\frac{df}{dx}gk + f\frac{dg}{dx}k + fg\frac{dk}{dx}$

•
$$h(x) = f(x)g(x)k(x);$$
 $\frac{dh}{dx} = \frac{df}{dx}g(x)g(x)k(x)$

• Take turns with a partner.

•
$$f(x) = (x^2 - 3)(x + 2)(x + 4)$$

•
$$g(t) = e^{at} \frac{\sin \omega t}{\cos 2\omega t}$$

 $\frac{df}{dx}gk + f\frac{dg}{dx}k + fg\frac{dk}{dx}$

Example: Delta Functions

•
$$\delta(g(x)) = \sum_{x_i \in \{x_i | g(x_i) = 0\}} \frac{1}{|g'(x_i)|}$$

• Compute $\delta(g(x))$ when g(x) = (x - 3)(x + 1)(x + 2).

 $\frac{1}{\delta(x-x_i)}$

Implicit differentiation

• If one cannot solve for a single variable, one can still find the derivative by differentiating each term and solving for the derivative you want.

• For example, what is $\frac{dy}{dx}$ when x^2 –

$$-xy - y^2 - 2y = 0.$$

Parametric derivatives

- Let's say we know position as a function of time.
 - $\vec{r}(t) = (x(t), y(t))$, how do find $\frac{dy}{dx}$?

Parametric derivatives

- Let's say we know position as a function of time.
 - $\vec{r}(t) = (x(t), y(t))$, how do find $\frac{dy}{dx}$?

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

•
$$\vec{r}(t) = \left(v_0 t, -\frac{g}{2}t^2\right)$$
; find $\frac{dy}{dx}$

Euler-Langrange Equation

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{\theta}}\right) - \frac{\partial L}{\partial \theta} = 0$$

- Where L = T U
- Simple pendulum
 - What are T and U?
 - Evaluate Euler-Langrange Equation