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Note: x derivative taken at y + dy, not y. The 
derivative amount is altered by on order dy. 
Negligible in the limit dy → 0



Kinematic Example (1 of 2) 

A projectile has velocity parametrized by time as 
v = (0, 5.3, 6.1-8.9*t) m/s.

If the position of projectile at t=1s is r(t=1s) = 
(-10, 5.3, 1.5) m, what is the position as a 
function of time?

What is acceleration vector? (Guess which 
planet this is.)
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Kinematic Example (2 of 2) 

A projectile has velocity parametrized by time as 
v = (0, 5.3, 6.1-8.9*t) m/s.

What is the displacement of the projectile from 
t=0 to t=9 s?

What is the distance traveled from t=0 to t=9 s? 
(Write the integral out and estimate it with a 
sum.) 

Why are the distance and displacement so 
different?
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Chain rule reminder

This is a way of taking the derivatives 
of nested functions.

Chain Rule
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Differential Operators: Gradient

Gradient: Application

● If the change in energy depends only upon the 
endpoints, the force is conservative, and a potential 
energy exists.

● Useful in expressing the relation between a force field 
and a potential field. The negative ensures the force is 
in the direction that minimizes the potential (see next 
slide)



Gradient example



Gradient: A Geometrical Interpretation
An immediate application of the Gradient: The change in the scalar function corresponding to a change in position dr.  

Take P and Q to be two points on a surface 𝝋(x, y, z) = constant. Moving 
from P to Q, the change in  𝝋(x, y, z) = constant is zero because we stay 
on the surface. Thus, ∇𝝋 is perpendicular to dr.

If we let dr be perpendicular to the surface, it takes us to an 
adjacent surface, from 𝝋 = C1 to 𝝋 = C2.

For a given |dr|, the change in the scalar function (d𝝋) is maximized by 
choosing dr parallel to ∇𝝋.
Hence ∇𝝋 is a vector having the direction of maximum space rate 
of change of 𝝋.



Differential Operators: Divergence
The divergence is defined through the operation:

Exercise 1: 
(1) For a general function f(r) and the position vector r, compute  
(2) Compute for the specific case: 

Exercise 2:
Compute the divergence of:



Divergence: A Physical Interpretation
Suppose a vector field v(r) is the velocity of a fluid and 𝛒(r) is the fluid density. Then the direction 
and magnitude of the flow rate at any point is v(r)𝛒(r).

We seek the net rate of change fluid density in a volume element at about the point r.



Divergence: A Physical Interpretation
Suppose a vector field v(r) is the velocity of a fluid and 𝛒(r) is the fluid density. Then the direction 
and magnitude of the flow rate at any point is v(r)𝛒(r).

We seek the net rate of change fluid density in a volume element at about the point r.

Adding corresponding contributions 
from other directions, we get the net 
flow out per unit time.

Recognize this as the 
differential of v(r)𝛒(r) in 
the x-direction

Hence 𝛁 * (𝝆V) is the net outward flux per unit volume  



Objectives this week
1. Complete the review of differential operators
2. Figure out how to define differential operators in arbitrary (curvilinear) 

coordinates
a. Particularly going from cartesian to cylindrical or spherical coordinates.

3. Have a functional knowledge of:
a. Generalized Stokes’ theorem and applications of it.
b. E.g. Gauss’ theorem (3d->2d), Green’s theorem, Stokes’ theorem (2d->1d) (the specific 

one…) 



Differential Operators: Curl

?



Review: Differential Operators: Gradient and Divergence

Gradient:

Divergence:



Differential Operators: Curl



Curl and divergence of electric field from a point charge

Exercise 3:
Compute the divergence and the curl of the 
field of an electric charge in cartesian 
coordinates. 

What happens at the origin?



Central field example, 

Exercise 1: 
(1) Why is this called a “central field”?

(2) For a general function f(r) and the position vector r, compute  

(3) Compute for the specific case: 

(4) Compute the curl of an arbitrary central field.



Determining a magnetic from a force on test charge, q



Using differential operators in Maxwell’s equation 

This is just a starting point.

In the future, you’ll be expected 
to derive the EM wave 
equation from these.

What’s the first step?



Using differential operators in Maxwell’s equation 

This is just a starting point.

In the future, you’ll be expected 
to derive the EM wave 
equation from these.

Get rid of sources, and curl one 
of the equations. Which one?



Using differential operators in Maxwell’s equation 

This is just a starting point.

In the future, you’ll be expected to derive the EM wave equation from these.

Get rid of sources, and curl one of the equations. Keep going!



Orthogonal Curvilinear Coordinates

Until now, we’ve relied on Cartesian coordinates to define our differential operators. 

We can describe a general 
point r using some coordinates:

The total differential is then

We define how the point changes 
with respect this new coordinate 
system. 



Orthogonal Curvilinear Coordinates Exercises
Exercise
(a) Find the scale factors, his, for cylindrical polar coordinates 
(b) Find the scale factors, his, for spherical polar coordinates

Cylindrical Transformation Spherical Transformation Scale Factor



Differential Operators in Curvilinear Coordinates

Gradient - Because the coordinates are 
orthogonal, the gradient takes the same 
form as for Cartesian coordinates:

Divergence 

Provided we use differential displacements: dri = hi dqi

Curl

● These will be revisited later! 
They can be proved relatively 
easy with the appropriate 
integral theorems.



Exercise: The Radial Function 
Useful equationsNote: the laplacian can be computed 

from the divergence and the gradient.



Exercise: The Magnetic Vector Potential

A single current loop in the xy-plane has a vector potential A that is a function 
only of the radius and polar angle. It is related to the current density J  by the 
equation:

Evaluate the cross products to get an expression for the current density.



Vector Integration Review 



Line, Surface, and Volume Integrals

● We will be doing several types of 
integration.

● At this point we have essentially two forms 
of integrands (the thing you integrate):

○ Scalar functions
■ E.g. mass density, scalar potentials, 

dot products of 
○ Vectors functions

■ E.g. forces, electric fields, cross 
products of other vectors. 

● The integrand type (e.g. scalar or vector) 
is independent of differential.

● Up to now we have performed only 
1-dimensional integration, but there’s a lot 
more that you can do now.

● The differential tells you how many 
integrations you need to do.

● Line integrals, dx
● Surface integrals, dA=dx dy
● Volume integrals, dV=dx dy dz

● The differential can also be a scalar or a 
vector.

○ So it is possible for the integrand and the 
the differential to both be vectors, but the 
integral to a scalar. How?



Volume integral of uniform density planet

The density of a planet is uniform, ρ.

Setup the integral for the total mass of the 
planet, M. The planet has a finite radius, R.

What is dV in cartesian coordinates? What is dV 
in spherical coordinates? Is dV a scalar or a 
vector?

Evaluate the mass integral.



Volume integral of non-uniform density planet

The density of a planet is linearly declining with 
increasing radius in this way:

Setup the integral for the total mass of the 
planet, M. The planet has a finite radius, R.

What is dV in cartesian coordinates? What is dV 
in spherical coordinates? Is dV a scalar or a 
vector?

Evaluate the mass integral.


