## REPRESENTATIONS OF MOTION

In this tutorial, you will use a motion detector to graph your motion and to investigate how motion can be described in terms of position, velocity, and acceleration. See your instructor for instructions on using the equipment.

## General tips

When using a motion detector:

- Stay in line with the detector and do not swing your arms. For best results, take off bulky sweaters or other loose-fitting clothing. You may find it helpful to hold a large board in front of you in order to present a larger target for the detector.
- Do not stand closer than about 0.5 meter or farther than 4.0 meters from the detector.
- It is difficult to obtain good a versus t graphs with the motion detector. Discuss any questions about your a versus t graphs with an instructor.

## **Instructions**

In each of the following problems, you will be given one of the following descriptions of a motion:

- a written description, or
- an x versus t, v versus t, or a versus t graph.

*Predict* the other three descriptions of the motion, then use the motion detector to check your answers. Check your predictions one-by-one, instead of checking several problems at once. In addition, answer the questions posed at the bottom of each page.

*Note:* So that your graphs emphasize important features, draw them in an idealized form rather than showing many small wiggles.

Example: The problem below has been worked as an example. Use the motion detector to verify the answers.



A. The computer program assumes a particular coordinate system. Describe this coordinate system.





E. How are the motions in parts C and D similar? How do they differ? How are the graphs similar? How do they differ?





I. How do the acceleration graphs for F, G, and H compare? Is it possible to have: a positive acceleration and slow down? a negative acceleration and speed up?

K.



L.



M. The term *decelerate* is often used to indicate that an object is slowing down. Does this term indicate the sign of the acceleration?