

CLIC overview

Lucie Linssen, CERN on behalf of the CLICdp collaboration

e+e- workshop, Washington, Lucie Linssen

CLIC physics and staged operation

Linear e⁺e⁻ collider, staging scenario motivated by maximum physics output

380 GeV (350 GeV) :	precision Higgs and top physics
1.5 TeV :	BSM searches, precision Higgs, ttH, HH, top physics
3 TeV :	BSM searches, precision Higgs, HH, top physics

Integrated luminosity [ab⁻¹] Integrated luminosity 6 Total 1% peak 0.38 TeV 1.5 TeV 3 TeV 4 2 0 5 15 10 20 25 0 Year

Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$
1	0.38 (and 0.35)	1.0
2	1.5	2.5
3	3.0	5.0

BSM searches: direct (up to \sim 1.5 TeV), indirect (>> TeV scales)

Polarised electron beam (-80%, +80%)

Ratio (50:50) at $\surd s{=}380GeV$; (80:20) at $\surd s{=}1.5$ and 3TeV

Coherent approach for CERN future colliders (running times, luminosity performance) **1.2×10⁷ sec/year** <u>arXiv:1810.13022</u>, Bordry et al.

22 Apr 2020

CLIC collaborations

http://clic.cern/

CLIC accelerator collaboration

~60 institutes from 28 countries

CLIC accelerator studies:

- CLIC accelerator design and development
- (Construction and operation of CLIC Test Facility, CTF3)

Spokesperson: philip.burrows@physics.ox.ac.uk CERN contact: steinar.stapnes@cern.ch

CLIC detector and physics (CLICdp) 30 institutes from 18 countries

Focus of CLIC-specific studies on:

- Physics prospects & simulation studies
- Detector optimization + R&D for CLIC

Spokesperson: <u>aidan.robson@cern.ch</u> CERN contact: <u>lucie.linssen@cern.ch</u>

CLIC overview documents

Formal European Strategy submissions

The Compact Linear e+e- Collider (CLIC): Accelerator and Detector (<u>arXiv:1812.07987</u>) The Compact Linear e+e- Collider (CLIC): Physics Potential (<u>arXiv:1812.07986</u>)

Yellow Reports

CLIC 2018 Summary Report (<u>CERN-2018-005-M</u>, <u>arXiv:1812.06018</u>) CLIC Project Implementation Plan (<u>CERN-2018-010-M</u>, <u>arXiv:1903.08655</u>) The CLIC potential for new physics (<u>CERN-2018-009-M</u>, <u>arXiv:1812.02093</u>) Detector technologies for CLIC (<u>CERN-2019-001</u>, <u>arXiv:1905.02520</u>)

Journal publications

Top-quark physics at the CLIC electron-positron linear collider (<u>Journal</u>, <u>arXiv:1807.02441</u>) Higgs physics at the CLIC electron-positron linear collider (<u>Journal</u>, <u>arXiv:1608.07538</u>) Rescaling of analyses from this paper to latest CLIC luminosities: <u>CDS</u>, <u>arXiv</u>

<u>CLICdp notes</u>

Updated CLIC luminosity staging baseline and Higgs coupling prospects (<u>CDS,arXiv:1812.01644</u>) CLICdet: The post-CDR CLIC detector model (<u>CDS</u>) A detector for CLIC: main parameters and performance (<u>CDS</u>, <u>arXiv:1812.07337</u>)

CLIC complex, 380 GeV CHOKE-MODE FLANGE Two-beam acceleration scheme power extraction and transfer 3 dB E-pla HVBRID 472 klystrons, 20 MW, 48 µs Drive beam complex drive beam accelerator 1.91 GeV, 1.0 GHz 2.0 km delay loop 73 m CR2 Ø 140 m Ø 95 m CR1 decelerators, each 878 m decelerators, 4 sectors time delay line BC2 BDS BDS BC2 2.2 km e⁺ main linac, 3.5 km e⁻ main linac, 12 GHz, 72 MV/m IP TA TA radius 300 m Main linac length 11.4 km booster linac Main beam complex CR combiner ring 2.86 to 9 GeV TA turnaround DR damping ring BC1 BC1 predamping ring PDR BC bunch compressor e[–] e⁺ e+ BDS beam delivery system e⁻ injector e⁺ injector DR DR IP interaction point PDR 2.86 GeV 359 m 359 m 389 m 2.86 GeV 380 GeV dump

overview of CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	\mathscr{L}	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	N	10^{9}	5.2	3.7	3.7
Bunch length	σ_{z}	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	\sim 40/1
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	900/20	660/20	660/20
Final RMS energy spread	•	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

readiness of CLIC technology

Many years of development, within a large international collaboration: Simulations, large diversity of hardware tests, system tests with beam at many labs...

E.g. CTF3 successfully demonstrated:

- ✓ drive beam generation
- ✓ RF power extraction
- two-beam acceleration up to a gradient of 145 MeV/m

civil engineering, power, cost

Main 380 GeV surface infrastructures fit on CERN-owned land

Currently only optimized for 380 GeV Further savings possible 1.5 TeV and 3 TeV power <u>not yet optimized</u>

arXiv:1812.06018

CLIC technology applications

Collaboration with many facilities Photon sources, medical applications Lots of experience being built up

See academic training W. Wuensch https://indico.cern.ch/event/668151/

One example: SwissFEL

- 104 C-band structures, 5.7 GHz, 2 m long
- Beam up to 6 GeV at 100 Hz
- Similar μ m-level tolerances
- Length ⇔ 800 CLIC structures

CLIC detector

e+e- workshop, Washington, Lucie Linssen

forward region and MDI

Last focusing elements in accelerator tunnel, L*=6 m. Detector kept short along beam line.

Service cavern (left), experimental cavern (right)

Forward detector region comprising beam feedback system and forward calorimeters:

- LumiCal (39 > θ >134 mrad)
- BeamCal (10 > θ > 46 mrad)

 \Leftarrow FCAL collaboration

Luminosity measurement down to *few* 0.1% Forward coverage for electrons/photons

impact of beam conditions on detector

e+e- workshop, Washington, Lucie Linssen

CLIC silicon pixel-detector R&D

- Challenging requirements lead to extensive detector R&D program
- ~10 institutes active in vertex/tracker R&D
- Collaboration with ATLAS, STREAM, ALICE, LHCb, Mu3e, AIDA-2020

Focus on conceptual studies + technology demonstrators

22 Apr 2020

high-granularity calorimetry

Electromagnetic calorimeter: Silicon – tungsten

- 2 mm tungsten plates, 500 μ m silicon sensors
- 40 layers, 22 X_0 or 1 λ_1 , 5×5 mm² cells
- ~2500 m² silicon, 100 million channels

Hadronic calorimeter: Scintillator - steel

- 19 mm steel plates, 3 mm plastic scintillators + SiPM
- 60 layers, 7.5 λ_1 , 30×30 mm² cells
- ~9000 m² scintillator, 10 million channels

Developed by CALICE collaboration

Technology choices similar to CMS HGCal upgrade project

CALICE SiPM+scint HCAL protoype

background suppression

Highly granular calorimetry + precise hit timing ↓
Very effective in suppressing backgrounds for fully reconstructed particles ↓
General trend for e⁺e⁻ and pp colliders

physics at CLIC

Measurement of SM particles with high precision: in particular **Higgs boson** and **top quark**

BSM sensitivity through:

 probing SM Effective Field Theories with unprecedented precision

 direct and indirect BSM searches that significantly extend reach of HL-LHC, including new particles in challenging non-standard signatures

Higgs coupling sensitivity

Full Geant4 simulation/reconstruction (including beam backgrounds) at all 3 stages → global fit including correlations

Precision <1% for most couplings

c/b/W/Z/g couplings significantly more precise than HL-LHC even after 380 GeV stage

 $\Gamma_{\rm H}$ is extracted with 4.7 – 2.5% precision

Each energy stage contributes significantly

updated to ESPPU luminosity scenario

Choice of 380 GeV for first CLIC stage

93

68

1000

1000

Hadronic Z decays provide the best sensitivity at 350 GeV

Optimisation study for the first CLIC stage (together with top physics):

• At 250 GeV the background is more signal-like

• At 420 GeV the cross section is lower and the jet energy resolution is worse

Eur. Phys. J. C 76, 72 (2016)

350

420

 $\pm 1.27\%$

 $\pm 1.86\%$

Higgs self-coupling

Higgs self-coupling requires high energy

top quark physics at CLIC

 \rightarrow complementarity

- coupling to Z and γ
- forward-backward asymmetry
- EFT interpretation

First e⁺e⁻ study of boosted top production, using jet substructure in reconstruction

Journal, arXiv:1807.02441

Dimension-6

operators

 $\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{\Lambda 2} \frac{c_i}{\mathcal{O}_i}$

Scale of new decoupled physics

Include CLIC Higgs, top, WW, and e⁺e⁻->ff measurements in global fit to constrain dimension-6 EFT operators

Strongly benefits from high-energy running

22 Apr 2020

The CLICdp collaboration currently pursues several activities and provides infrastructures which are **available/extendable for collaboration on Higgs factories in general**. Most prominent examples listed below

- Broad collaborative silicon pixel R&D effort (hybrid, monolithic), includes supporting tools:
 - Beam telescope and DAQ framework
 - Generic Caribou readout system for pixel-detector prototypes <u>TWEPP proc 2019</u>
 - Allpix2 simulation framework <u>arXiv:1806.05813</u>, <u>arXiv:2002.12602</u>
 - Corryvreckon analysis framework <u>arXiv:1912.00856</u>

Contact persons:

<u>dominik.dannheim@cern.ch</u> (CERN), <u>mathieu.benoit@cern.ch</u> (Brookhaven)

Software and analysis tools:

- Complete software for full simulation/reconstruction (ilCSoft => Key4hep)
- Support for physics studies (including, e.g., generators, beam-induced bkg overlay)
- Grid production tool iLCDirac

See next slide

simulation/reconstruction SW

Detector	Collider	SW name	SW status	SW future	
		:1 CC - ft			Recommendation:
ILD	ILC	ΙLCSOΠ	Full sim/reco		
SiD	ILC	iLCSoft	Full sim/reco		USE ILCSOTT NOW
CLICdet	CLIC	iLCSoft	Full sim/reco		and
	ECC ee	il CSoft	Full sim/reco	Kaydhan	join Key4hep development
	100-66			кеу4пер	, , ,
IDEA	FCC-ee	FCC-SW	Fast sim/reco		
IDEA	CEPC	FCC-SW	Fast sim/reco		
CEPCbaseline	CEPC	iLCSoft branch-off	Full sim/reco		

Contact: <u>frank.gaede@desy.de</u> (DESY, iLCSoft/Key4hep), <u>andre.philippe.sailer@cern.ch</u> (CERN, iLCSoft/Key4hep/iLCDirac), <u>paolo.giacomelli@bo.infn.it</u> (Bologna, FCC-SW/Key4hep), <u>manqi.ruan@ihep.ac.cn</u> (IHEP, CEPC), <u>philipp.roloff@cern.ch</u> (CERN, physics studies iLCSoft/Key4hep), <u>jenny.list@desy.de</u> (DESY, physics studies iLCSoft/Key4hep)

CLIC is a very attractive post-LHC facility for CERN

Unprecedented, diverse and guaranteed excellent physics reach

thanks to lepton collider precision AND multi-TeV collisions

Demonstrated accelerator technologies

Feasible timescale, "affordable" cost

US colleagues are most welcome to join the broad e⁺e⁻ community for physics

studies, detector design and detector R&D.

Independently of the future e⁺e⁻ collider facility, we recommend to use

existing tools and join common developments.

 $H \rightarrow b\bar{b}$ (58% BR): selection efficiency ~40% (1.4 TeV), ~50% (380 GeV)

reserve slides

beam-induced backgrounds at CLIC

Beamstrahlung → important energy losses right at the interaction point

Most physics processes are studied well above production threshold => profit from full spectrum

Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV Eur.Phys.J. C74 (2014) no.4, 2833

arXiv:1812.06018

detector performance requirements

vertex and tracking detectors

Requirements:

low mass: $0.2\%X_0$ per layer low power: 50 mW/cm² for air cooling single point resolution: 3 μ m hit time resolution: ~5 ns

Implementation and R&D:

silicon-based (pixels, hybrid or monolithic) 3 double layers spiraling petals to facilitate air cooling power pulsing

Tracker

Requirements:

low mass: 1-2%X₀ per layer single point resolution: 7 μ m hit time resolution: ~5 ns

Implementation and R&D:

silicon-based (pixels, monolithic) power pulsing water cooling (below atm. pressure)

tracking performance

Detector description (*in DD4hep*), detector simulation (*in Geant4*) and reconstruction implemented in **iLCSoft framework**

Tracking based on conformal tracking and Kalman-filter based fit

PFA, jet energy reconstruction

PandoraPFA particle flow analysis used for jet energy reconstruction and particle ID. Combined with **jet clustering optimized for e**⁺e⁻ (**VLC** Valencia algorithm)

- Jet energy resolution from $Z/\gamma^* \rightarrow qq$, compare reconstruction with MC truth
 - → Objective of 3.5-5% jet energy resolution achieved for high-E jets in most of angular range
 - → Impact from 3 TeV backgrounds largest for low-energy jets, resolution 6-8%
- W/Z mass separation in 2-jet events: 2σ separation with VLC7 jets, including 3 TeV bkg

arXiv:1812.07337

flavour tagging performance

LCFIplus package used for flavour tagging

Studied in 500 GeV di-jet events, with and without $\gamma\gamma \rightarrow$ hadrons background (3TeV equivalent)

22 Apr 2020

combined CLIC Higgs coupling results

Full CLIC program, ~7 yrs of running at each stage:

- Model-independent: down to $\pm 1\%$ for most couplings, ultimately limited by $g_{HZZ} \pm 0.6\%$
- Model-dependent: ±1% down to ± few ‰ for most couplings
- Accuracy on Higgs width: ±2.5% (MI)

New physics reach

The precision measurements and searches can be interpreted in a wide range of model frameworks

Indicative CLIC reach for new physics. Sensitivities are given for the full CLIC programme covering the three centre-of-mass stages. All limits are at 95% C.L. unless stated otherwise. Details on many of these examples are given in The CLIC Potential for New Physics: <u>https://arxiv.org/abs/1812.07986</u>

Process	HL-LHC	CLIC
Higgs mixing with heavy singlet	$\sin^2\gamma < 4\%$	$\sin^2\gamma < 0.24\%$
Higgs self-coupling $\Delta \lambda$	$\sim 50\%$ at 68% C.L.	[-7%,11%] at 68% C.L.
$BR(H \rightarrow inv.)$ (model-independent)		< 0.69% at 90% C.L.
Higgs compositeness scale m_*	$m_* > 3 \mathrm{TeV}$	Discovery up to $m_* = 10 \text{TeV}$
	$(>7 \mathrm{TeV} \mathrm{for} g_* \simeq 8)$	(40 TeV for $g_* \simeq 8$)
Top compositeness scale m_*		Discovery up to $m_* = 8 \text{ TeV}$
		(20 TeV for small coupling g_*)
Higgsino mass (disappearing track search)	> 250 GeV	> 1.2 TeV
Slepton mass		Discovery up to $\sim 1.5 \text{TeV}$
RPV wino mass ($c\tau = 300 \text{ m}$)	> 550 GeV	> 1.5 TeV
Z' mass (SM couplings)	Discovery up to 7 TeV	Discovery up to 20 TeV
NMSSM scalar singlet mass	$> 650 \mathrm{GeV} (\tan\beta \le 4)$	$> 1.5 \mathrm{TeV} (\tan\beta \le 4)$
Twin Higgs scalar singlet mass	$m_{\sigma} = f > 1 \text{TeV}$	$m_{\sigma} = f > 4.5 \mathrm{TeV}$
Relaxion mass (for vanishing mixing)	< 24 GeV	< 12GeV
Relaxion mixing angle $(m_{\phi} < m_{\rm H}/2)$		$\sin^2 \theta \le 2.3\%$
Neutrino Type-2 see-saw triplet		> 1.5 TeV (for any triplet VEV)
		$> 10 \text{TeV}$ (for triplet Yukawa coupling $\simeq 0.1$)
Inverse see-saw RH neutrino		$> 10 \text{TeV}$ (for Yukawa coupling $\simeq 1$)
Scale $V_{LL}^{-1/2}$ for LFV $(\bar{e}e)(\bar{e}\tau)$		> 42 TeV

e+e- workshop, Washington, Lucie Linssen

CLIC time line

Technology-driven schedule, from start of construction.

After an in principle go ahead, min. 5 years are needed before construction can start.

=> First beams could be available by 2035

Z-pole and gamma-gamma options

- Operating the fully installed 380 GeV CLIC accelerator complex but at the Z-pole results in a luminosity of about L = 2.3 x 10³² cm⁻²s⁻¹
- On the other hand, an initial installation of just the linac needed for Z-pole energy factory, and an appropriately adapted beam delivery system, would result in a luminosity of L = 0.36 × 1034 cm-2s-1 for 50 Hz operation.
- In gamma-gamma mode, the electrons in both beams are focused at the IP and an intense laser pulse can be used to back-scatter photons from each beam and make them interact. The electron polarisation is important for this process and 80% can be expected. Although detailed studies of the interaction region configuration have not yet been performed, a first order an idea the performance can be obtained, including the luminosity spectrum.

