

Future Circular Collider Study

International FCC collaboration with CERN as host lab to study:

- ~100 km tunnel infrastructure in Geneva area and linked to CERN
- e+e- collider (FCC-ee) as potential first step
- pp-collider (FCC-hh) as long-term goal, defining the infrastructure requirements
 - ~16T => 100 TeV pp in 100 km
- HE-LHC with FCC-hh technology
- lon and lepton-hadron options with hadron collider

FCC Results

4 CDR volumes published in EPJ

FCC Physics Opportunities

Copies can be requested at http://get-fcc-cdr.web.cern.ch

FCC-ee: The Lepton Collider

FCC-hh:
The Hadron Collider

HE-LHC: The High Energy Large Hadron Collider

FCC Program

Program in two phase

- Phase 1: FCC-ee (Z, W, H, tt) as Higgs, EW and top factory at highest luminosities.
- Phase 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options.

FCC Technical Schedule

FCC project plan is fully integrated with HL-LHC exploitation and provides seamless continuation of high energy physics at the energy frontier

FCC-ee Operations

- roo-ee operatio
- → A fantastic Higgs factory and much more
- → Higgs factory
- **→** EW & Top factory

 - \bullet 108 e+e- \rightarrow W+W-; 106 e+e- \rightarrow tt
 - Transverse polarization
 - Sensitive to NP up to 100 TeV
- **→** Flavor factory
 - **⊚** 5x10¹² e+e- → bb, cc; 10¹¹ e+e- → τ + τ -
- → Precision tool
 - QED: (mZ), QCD (mZ), 10⁵ H → gg
- → Potential discovery of NP
 - ALPs, RH v's, ...

Schedule basis for CDR physics result.

Can be modified or optimized!

FCC-ee Higgs Couplings

→Unique measurements at highest precision

HL-LHC	ILC ₂₅₀	CLIC ₃₈₀	FCC-ee			FCC-eh
3	2	0.5	5 @ 240 GeV	+ 1.5 @ 365 GeV	+ HL-LHC	2
25	15	8	3	+4	-	20
SM	3.6	4.7	2.7	1.3	1.1	SM
1.5	0.30	0.60	0.2	0.17	0.16	0.43
1.7	1.7	1.0	1.3	0.43	0.40	0.26
3.7	1.7	2.1	1.3	0.61	0.56	0.74
SM	2.3	4.4	1.7	1.21	1.18	1.35
2.5	2.2	2.6	1.6	1.01	0.90	1.17
1.9	1.9	3.1	1.4	0.74	0.67	1.10
4.3	14.1	n.a.	10.1	9.0	3.8	n.a.
1.8	6.4	n.a.	4.8	3.9	1.3	2.3
3.4	_	-	-	-	3.1	1.7
SM	< 1.8	< 3.0	< 1.2	< 1.0	< 1.0	n.a.
	3 25 SM 1.5 1.7 3.7 SM 2.5 1.9 4.3 1.8 3.4	3 2 25 15 SM 3.6 1.5 0.30 1.7 1.7 3.7 1.7 SM 2.3 2.5 2.2 1.9 1.9 4.3 14.1 1.8 6.4 3.4 -	3 2 0.5 25 15 8 SM 3.6 4.7 1.5 0.30 0.60 1.7 1.7 1.0 3.7 1.7 2.1 SM 2.3 4.4 2.5 2.2 2.6 1.9 1.9 3.1 4.3 14.1 n.a. 1.8 6.4 n.a. 3.4 — —	3 2 0.5 5 @ 240 GeV 25 15 8 3 SM 3.6 4.7 2.7 1.5 0.30 0.60 0.2 1.7 1.7 1.0 1.3 3.7 1.7 2.1 1.3 SM 2.3 4.4 1.7 2.5 2.2 2.6 1.6 1.9 1.9 3.1 1.4 4.3 14.1 n.a. 10.1 1.8 6.4 n.a. 4.8 3.4 — — —	3 2 0.5 5 @ 240 GeV +1.5 @ 365 GeV 25 15 8 3 +4 SM 3.6 4.7 2.7 1.3 1.5 0.30 0.60 0.2 0.17 1.7 1.7 1.0 1.3 0.43 3.7 1.7 2.1 1.3 0.61 SM 2.3 4.4 1.7 1.21 2.5 2.2 2.6 1.6 1.01 1.9 1.9 3.1 1.4 0.74 4.3 14.1 n.a. 10.1 9.0 1.8 6.4 n.a. 4.8 3.9 3.4	3 2 0.5 5 @ 240 GeV +1.5 @ 365 GeV +HL-LHC 25 15 8 3 +4 - SM 3.6 4.7 2.7 1.3 1.1 1.5 0.30 0.60 0.2 0.17 0.16 1.7 1.7 1.0 1.3 0.43 0.40 3.7 1.7 2.1 1.3 0.61 0.56 SM 2.3 4.4 1.7 1.21 1.18 2.5 2.2 2.6 1.6 1.01 0.90 1.9 1.9 3.1 1.4 0.74 0.67 4.3 14.1 n.a. 10.1 9.0 3.8 1.8 6.4 n.a. 4.8 3.9 1.3 3.4 3 3.1

- →Uncertainties not limited by experimental or theoretical uncertainties. Statistics sets the floor.
- →Indirect sensitivity to Higgs self-coupling

FCC-ee EW & Top Physics Program

Table 3.1 Measurement of selected electroweak quantities at the FCC-ee, compared with the present precisions

	1		, 1	1 1		
Observable	Present value \pm error	FCC-ee Stat.	FCC-ee Syst.	Comment and dominant exp. error		
m _Z (keV)	$91,186,700 \pm 2200$	5	100	From Z line shape scan Beam energy calibration		
Γ_Z (keV)	$2,495,200 \pm 2300$	8 100		From Z line shape scan Beam energy calibration		
R_{ℓ}^{Z} (×10 ³)	$20,767 \pm 25$	0.06	0.2-1.0	Ratio of hadrons to leptons acceptance for leptons		
$\alpha_{\rm s}~(\rm m_{\rm Z})~(\times 10^4)$	1196 ± 30	0.1	0.4–1.6	From R_{ℓ}^{Z} above [43]		
$R_b (\times 10^6)$	$216,290 \pm 660$	0.3	< 60	Ratio of $b\bar{b}$ to hadrons stat. extrapol. from SLD [44]		
$\sigma_{\rm had}^0~(\times 10^3)~({\rm nb})$	$41,541 \pm 37$	0.1	4	Peak hadronic cross-section luminosity measurement		
$N_{\nu}~(\times 10^3)$	2991 ± 7	0.005	1	Z peak cross sections Luminosity measurement		
$\sin^2 \theta_W^{\rm eff} \ (\times 10^6)$	$231,480 \pm 160$	3	2–5	From $A_{FB}^{\mu\mu}$ at Z peak Beam energy calibration		
$1/\alpha_{\rm QED}~(m_{\rm Z})~(\times 10^3)$	$128,952 \pm 14$	4	Small	From $A_{FB}^{\mu\mu}$ off peak [34]		
$A_{FB}^{b,0} (\times 10^4)$	992 ± 16	0.02	1–3	b-quark asymmetry at Z pole from jet charge		
$A_{FB}^{pol,\tau}~(\times 10^4)$	1498 ± 49	0.15	< 2	τ Polarisation and charge asymmetry τ decay physics		
m_W (MeV)	$80,350 \pm 15$	0.5	0.3	From WW threshold scan Beam energy calibration		
Γ_{W} (MeV)	2085 ± 42	1.2	0.3	From WW threshold scan Beam energy calibration		
$\alpha_{\rm s}~(m_{\rm W})~(\times 10^4)$	1170 ± 420	3	Small	From R_{ℓ}^{W} [45]		
$N_{\nu}~(\times 10^3)$	2920 ± 50	0.8	Small	Ratio of invis. to leptonic in radiative Z returns		
$m_{top} \; (MeV)$	$172,740 \pm 500$	17	Small	From tt threshold scan QCD errors dominate		
$\Gamma_{top} \; (MeV)$	1410 ± 190	45	Small	From tt threshold scan QCD errors dominate		
$\lambda_{top}/\lambda_{top}^{SM}$	1.2 ± 0.3	0.1	Small	From tt threshold scan QCD errors dominate		
ttZ couplings	$\pm30\%$	0.5-1.5%	Small	From $E_{CM} = 365 \text{ GeV run}$		

Z pole

WW

tt

→ First set of main observables

- Statistical precision follows straight forward
- For Z and W boson mass, center-of-mass energy uncertainty will dominate
- For cross-section measurements the luminosity measurement will be limiting
- Possible experimental uncertainties are indicative

Unique measurement at FCC-ee

→ First generation Higgs couplings

- Not part of baseline run plan but a few years at √s = mH with high luminosity is an interesting add-on
- Expected signal significance of 0.4σ / √ year in option 1 and 2 (see below)
 - Set a electron Yukawa coupling upper limit: k_e < 2.5 @95% CL
 - Reaches SM sensitivity after 5 years

Physics Results (FCC-ee) Landscape

→ Possible FCC-ee discoveries

- ⇒ Exploring 10-100 TeV energy scale with precision measurements
 - "Model independent" Higgs couplings
 - → Higgs self couplings
 - \rightarrow m_Z, m_W, m_{top}, sin² Θ_{W}^{eff} , R^b, $\alpha_{QED}(m_{Z},m_{W},m_{\tau})$, top quark couplings
- Discovery of dark matter as invisible decays of H or others
- → Discovery of very weakly coupled particles in 5-100 GeV range such as RH neutrinos, dark photons, ALPS, etc
- Discoveries in flavor physics and many more opportunities
- → EW precision program essential to maximize Higgs factories potential

FCC-ee Detectors

Two detector concepts studied for integration, performance and cost estimates:

- Linear Collider Detector group at CERN has undertaken the adaption of CLIC-SID detector for FCC-ee
- IDEA, detector specifically designed for FCC-ee (and CEPC)

Next step is in optimizing detectors for physics

"CLIC-detector revisited"

- Vertex detector: ALICE
 - Tracking: MEG2
- Si Preshower
- Ultra-thin solenoid (2T)
- Calorimeter: DREAM
- Equipped return yoke

European Strategy

2013: To stay at the forefront of particle physics ... CERN should undertake design studies ... with emphasis on proton-proton and electron-positron high-energy frontier machines

2018/19: Physics Briefing book published as result of bottom-up community contributions https://arxiv.org/abs/1910.11775

2020: Recommendation discussed at March 15th CERN Council meeting **but** the meeting to endorse the strategy in May has been cancelled due to COVID-19

FCC Main Goals (2020-2026)

Overall goal

 Perform all necessary steps and studies to enable a definitive project decision by 2025/26, at the anticipated date for the next ESU, and a subsequent start of civil engineering construction by 2028/29.

This requires successful completion of the following four main activities

- Develop and establish a governance model for project construction and operation
- Develop and establish a financing strategy
- Prepare and successfully complete all required project preparatory and administrative processes with the host states (debat public, EIA, etc.)
- Perform site investigations to enable CE planning and to prepare CE tendering.

In parallel development preparation of TDRs and physics/ experiment studies

- Machine designs and main technology R&D lines
- Establish user communities, work towards proto-experiment collaboration by 2025/26.

Conclusion: FCC

- International FCC study focused on the conceptual design of high-performance energy frontier circular colliders for the post-LHC era.
- The first phase of FCC conceptual design studies is completed.
- Baseline machine designs and associated infrastructures, with performance matching the physics requirements, were established and are documented in 4 CDRs.
- Conditional on European Strategy recommendations, the next steps will develop a concrete implementation plan in collaboration with host states, accompanied by machine optimization, physics studies and technology R&D.

Conclusion: FCC-ee

- → FCC-ee is a Z, W, H, top (and NP) factory with exciting opportunities
- → FCC-ee Higgs factory offers a unique dataset from 240 to 365 GeV
 - Delivers model-independent precision measurements of Higgs properties
 - Couplings including self-coupling, mass, CP, ...
 - The floor is statistical
- → EW and Higgs observables probe the scales to up to 50 TeV
 - Gain of 1-2 orders of magnitude in precision
 - EW precision measurements enable high accuracy Higgs program
- → Synergy and complementarity to hadron collider physics programs (HL-LHC, FCC-hh)

References

- → 4 CDR volumes
- → First look at the physics case of TLEP
 - JHEP 1401 (2014) 164; > 500 citations
- **→** FCC The Lepton Collider
 - Eur. Phys. JST (2019)
- **→** FCC Physics Opportunities
 - Eur. Phys. J. C. (2019) 79:474
- **→** FCC-ee: Your Questions Answered
 - arXiv:1906.02693
- → Jan'20 FCC physics workshop
 - https://indico.cern.ch/event/838435/