
EPICS Development and deployment at ESS

Timo Korhonen

ICS Chief Engineer
European Spallation Source ERIC

Date

Overview

• Introduction

• Context of ESS

– The project, organisation, collaborations

• What would we like to achieve, and why?

– Project duration, facility lifetime considerations

• eSS ePICS environment, aka e3

– Basic concepts and structures

• Deployment of IOCs

– From code to functional controllers

• Summary

2

Introduction

• In the 2019 deployment meeting @ITER, I presented slides from Jeong Han Lee

– I did not do a good job – I think the core message was lost
• Those slides contain a lot of good material, I recommend to take a look

– This time I concentrate on the concepts only – details to be discussed separately

• A lot of things has happened since

– We have forked even more from the PSI implementation
• Dropped some architectures that we had no chance of supporting or understanding (notably VxWorks)

• “require” developed further, version numbering has been revised, etc.

– e3 has been augmented with a deployment tool
• Not a subject of this talk, but a crucial (and very nice) tool;

– There is also a “help desk” for support and requests

– We have first commissioning rounds behind us
• over 500 e3-based IOCs deployed on over 200 hosts, number is growing.

• The system has matured, but there is still a lot of development going on

3

The ESS Context

• ESS is a pretty large project

– 12 member countries, cost to completion ~3000 MEUR (1800+800+500)

– Green field, starting from the ground (no existing infrastructure, institute, facility,…)

• Building the organization from scratch has been a long and winding road.

– New people, many first time in an accelerator or scientific project

– The organisation has also been a moving target – new things come up on the way

– Growth has been fast
• Hard to keep consistency and coherence in working practices

• Skills are very different – different backgrounds

– We have to continuously adapt to new things
• EPICS developments – new features

• Changing environment in the project / institution

4

High-level goals

• Support on-boarding of new people, under time pressure

– Standardization of work practices
• To enable sharing of developments and mobility of people

– Simplification of IOC composition
• Provide a common baseline to get quickly started

– Separation of concerns: control system integration vs. software engineering
• To enable people to concentrate on the tasks at hand and utilize the skill that they bring in

• Adapt to the changes in the surrounding environment without compromising quality

– Agility
• Keep up with the developments in EPICS (7), in IOC and on the service layer

• Frequent small updates instead of a “big bang”

• “no IOC left behind” policy – new features (e.g., Channel Finder enhancements) easy to add

– Quality control, system-wide
• CI/CD builds, known sources of modules, dedicated support team

5

Oversimplified, please bear with me.

Central concepts of e3

• The environment is centrally provided for all (production) systems/IOCs

– EPICS Core release, in multiple (but limited number of) versions

– E3 Core team is responsible for composition and provision
• Gatekeeper of what modules are installed in production

• IOC is configured start-up time

– No code compilation for an individual IOC

• (when did you last compile the Linux kernel to add or update drivers? 😉)

– Modules (asyn, StreamDevice, Area Detector,…)are loaded with a require module name [version] in startup
script
• Further configuration done with startup snippets

• And of course in database templates and substitutions

• IOCs become “codeless” – startup scripts plus database configuration

• Module updates (in an individual IOC) do not require compilation

– “service” modules can be updated without asking the IOC developer to re-compile
• IOC restart and simple functionality test is sufficient

6

Implementation

• EPICS resources are provided as a combination of

– Core release

– A selection of modules, possibly in different versions

– Method for loading modules with module dependencies pre-organized
• “require <module>” command in startup script

– Modules and libraries in a tree structure, pre-compiled

• Production versions provided in a shared file system tree
• Typically NFS (CEPH in consideration for the future.)

• Locally built trees are also possible but not allowed/supported in production

• More reading: introduction, download links and install instructions:
http://e3.pages.esss.lu.se/index.html

– Should build without issues on fairly recent Linux distributions (Red Hat, Debian)

7

A selection of details – nowhere near a complete description

http://e3.pages.esss.lu.se/index.html

User (IOC developer) side

• Figure out what the IOC needs to do, decide the platform

– aka “system requirements”

– Embedded/MTCA, PC-based, fully virtualized

• Select appropriate modules for the task from the e3 module list

– If no appropriate module has been provided:
• Ask the e3 support team to add one from the community, or

• Develop your own; ask e3 team to integrate when it is ready for production

• For testing of new combinations in the field, a “sandbox” method is provided (“cell mode”)

– No scourging of modules or drivers from the network!

• Configure the device support and drivers

• Write the database templates to implement the functionality

• Test, and deploy

– …and in parallel, write a lot of documentation required by ESS
– Well, it is not that much after all IMHO…the next guy who takes over the maintenance will appreciate.

8

Pros and cons

+ IOC developers do not have to worry about code details

+ Unless they want to, or are developing new code

+ Deployed software is easier to manage (uniformity)

+ Updates are easy (there is always some pain, but frequent updates keep the pain small.)

+ System is (relatively) easy to keep up to date and add new services

• A dedicated team required to provide the resources

- This is both a pro and con: experts are not easy to find (or to educate), OTOH the experts can concentrate on
what they can the best. (we have also quite active user participation.)

- Customization needed for module integration

- Dependency handling, patching (which can be a pro as well)

- Loneliness…😢

- Most sites still prefer to recompile each (type of) IOC…

9

A selection

Summary

• e3 tries to address the goals and challenges of ESS

• Development has taken some time, even when we started from the example of PSI

• It was not straightforward to get buy-in from IOC developers

– Organisational goals are often not seen or recognized by the individual developers

– There were several turns in development, sometimes contradictory

• We have now reached a stable state

– Manifested by the stability in operation, developer buy-in and drastic reduction of issues and complaints
• It is almost too silent…

• Not all work is done however.

– We would like to reduce or remove the need to create e3-specific wrappers and just use the EPICS build
system. (seems feasible even if not straightforward; details need still to be worked out)

– Module (re)organisation is under consideration
• Dilemma: how to deal with modules that provide generic functionality vs. those for specific device or application integration.

• There are some promising ideas brewing.

10

Acknowledgements

– The ESS e3 team core members during development:
• Simon Rose, Anders Lindh Ohlsson, Krisztian Löki, Wayne Lewis (Osprey DCS)

– Alumni:
• Jeong Han Lee (aka Han)

• Klemen Strnisa, Niklas Claesson (Cosylab), first EEE, modelled after PSI and later became e3

• Benjamin Bertrand, supporting EEE deployment (now at MaxIV)

– Father of the concept and implementer of the PSI version
• Dirk Zimoch (PSI)

• plus other colleagues at PSI

• Without the effort and skills of all these people we would not be where we are.

11

Additional material

Deployment status as of today

13

(we are in a shutdown + installation period, many IOCs offline)

Installed modules and their dependencies

14

(for each available version)

Installed modules and their dependencies

15

(table view, including build pipeline status)

