

EPICS Development and deployment at ESS

Timo Korhonen

ICS Chief Engineer

European Spallation Source ERIC

Date

Overview

- Introduction
- Context of ESS
 - The project, organisation, collaborations
- What would we like to achieve, and why?
 - Project duration, facility lifetime considerations
- eSS ePICS environment, aka e3
 - Basic concepts and structures
- Deployment of IOCs
 - From code to functional controllers
- Summary

Introduction

- In the 2019 deployment meeting @ITER, I presented slides from Jeong Han Lee
 - I did not do a good job I think the core message was lost
 - Those slides contain a lot of good material, I recommend to take a look
 - This time I concentrate on the concepts only details to be discussed separately
- A lot of things has happened since
 - We have forked even more from the PSI implementation
 - Dropped some architectures that we had no chance of supporting or understanding (notably VxWorks)
 - "require" developed further, version numbering has been revised, etc.
 - e3 has been augmented with a deployment tool
 - Not a subject of this talk, but a crucial (and very nice) tool;
 - There is also a "help desk" for support and requests
 - We have first commissioning rounds behind us
 - over 500 e3-based IOCs deployed on over 200 hosts, number is growing.
- The system has matured, but there is still a lot of development going on

The ESS Context

- ESS is a pretty large project
 - 12 member countries, cost to completion ~3000 MEUR (1800+800+500)
 - Green field, starting from the ground (no existing infrastructure, institute, facility,...)
- Building the organization from scratch has been a long and winding road.
 - New people, many first time in an accelerator or scientific project
 - The organisation has also been a moving target new things come up on the way
 - Growth has been fast
 - Hard to keep consistency and coherence in working practices
 - Skills are very different different backgrounds
 - We have to continuously adapt to new things
 - EPICS developments new features
 - Changing environment in the project / institution

High-level goals

Oversimplified, please bear with me.

- Support on-boarding of new people, under time pressure
 - Standardization of work practices
 - To enable sharing of developments and mobility of people
 - Simplification of IOC composition
 - Provide a common baseline to get quickly started
 - Separation of concerns: control system integration vs. software engineering
 - To enable people to concentrate on the tasks at hand and utilize the skill that they bring in
- Adapt to the changes in the surrounding environment without compromising quality
 - Agility
 - Keep up with the developments in EPICS (7), in IOC and on the service layer
 - Frequent small updates instead of a "big bang"
 - "no IOC left behind" policy new features (e.g., Channel Finder enhancements) easy to add
 - Quality control, system-wide
 - CI/CD builds, known sources of modules, dedicated support team

Central concepts of e3

- The environment is centrally provided for all (production) systems/IOCs
 - EPICS Core release, in multiple (but limited number of) versions
 - E3 Core team is responsible for composition and provision
 - Gatekeeper of what modules are installed in production
- IOC is configured start-up time
 - No code compilation for an individual IOC
 - (when did **you** last compile the Linux kernel to add or update drivers? 😉)
 - Modules (asyn, StreamDevice, Area Detector,...) are loaded with a require module name [version] in startup script
 - Further configuration done with startup snippets
 - And of course in database templates and substitutions
- IOCs become "codeless" startup scripts plus database configuration
- Module updates (in an individual IOC) do not require compilation
 - "service" modules can be updated without asking the IOC developer to re-compile
 - IOC restart and simple functionality test is sufficient

Implementation

EUROPEAN SPALLATION SOURCE

A selection of details – nowhere near a complete description

- EPICS resources are provided as a combination of
 - Core release
 - A selection of modules, possibly in different versions
 - Method for loading modules with module dependencies pre-organized
 - "require <module>" command in startup script
 - Modules and libraries in a tree structure, pre-compiled
- Production versions provided in a shared file system tree
 - Typically NFS (CEPH in consideration for the future.)
 - Locally built trees are also possible but not allowed/supported in production
- More reading: introduction, download links and install instructions: http://e3.pages.esss.lu.se/index.html
 - Should build without issues on fairly recent Linux distributions (Red Hat, Debian)

User (IOC developer) side

- Figure out what the IOC needs to do, decide the platform
 - aka "system requirements"
 - Embedded/MTCA, PC-based, fully virtualized
- Select appropriate modules for the task from the e3 module list
 - If no appropriate module has been provided:
 - Ask the e3 support team to add one from the community, or
 - Develop your own; ask e3 team to integrate when it is ready for production
 - For testing of new combinations in the field, a "sandbox" method is provided ("cell mode")
 - No scourging of modules or drivers from the network!
- Configure the device support and drivers
- Write the database templates to implement the functionality
- Test, and deploy
 - ...and in parallel, write a lot of documentation required by ESS
 - Well, it is not that much after all IMHO...the next guy who takes over the maintenance will appreciate.

Pros and cons

A selection

- + IOC developers do not have to worry about code details
 - + Unless they want to, or are developing new code
- Deployed software is easier to manage (uniformity)
- + Updates are easy (there is always some pain, but frequent updates keep the pain small.)
- + System is (relatively) easy to keep up to date and add new services
- A dedicated team required to provide the resources
 - This is both a pro and con: experts are not easy to find (or to educate), OTOH the experts can concentrate on what they can the best. (we have also quite active user participation.)
- Customization needed for module integration
 - Dependency handling, patching (which can be a pro as well)
- Loneliness... 😥
 - Most sites still prefer to recompile each (type of) IOC...

Summary

- e3 tries to address the goals and challenges of ESS
- Development has taken some time, even when we started from the example of PSI
- It was not straightforward to get buy-in from IOC developers
 - Organisational goals are often not seen or recognized by the individual developers
 - There were several turns in development, sometimes contradictory
- We have now reached a stable state
 - Manifested by the stability in operation, developer buy-in and drastic reduction of issues and complaints
 - It is almost too silent...
- Not all work is done however.
 - We would like to reduce or remove the need to create e3-specific wrappers and just use the EPICS build system. (seems feasible even if not straightforward; details need still to be worked out)
 - Module (re)organisation is under consideration
 - Dilemma: how to deal with modules that provide generic functionality vs. those for specific device or application integration.
 - There are some promising ideas brewing.

Acknowledgements

- The ESS e3 team core members during development:
 - Simon Rose, Anders Lindh Ohlsson, Krisztian Löki, Wayne Lewis (Osprey DCS)
- Alumni:
 - Jeong Han Lee (aka Han)
 - Klemen Strnisa, Niklas Claesson (Cosylab), first EEE, modelled after PSI and later became e3
 - Benjamin Bertrand, supporting EEE deployment (now at MaxIV)
- Father of the concept and implementer of the PSI version
 - Dirk Zimoch (PSI)
 - plus other colleagues at PSI
- Without the effort and skills of all these people we would not be where we are.

Additional material

Deployment status as of today

À	CE deploy & mo	nitor / Statistics			LOGIN
() ()	IOCs		Statistics		
Ê	Log		Network monitoring		
~ ₹	Statistics		IOCs detected on ESS control networks	504	
•			IOC hosts reachable on all ESS control networks	359	
	About		IOC hosts reachable on the technical network	308	
			Number of IOC hosts which are unreachable or have issues	368	
			According to the deployment tool		
			Registered IOCs	606	
			Currently deployed IOCs	560	
			Number of hosts running IOCs	217	
			Total number of deployment jobs executed	2069	
			IOCs per network scope according to the deployment tool		
			LabNetworks	63	
	<		NIN	5	
			T. I	104	

Installed modules and their dependencies

(for each available version)

Installed modules and their dependencies

ICS NFS E3 Table Node Graph Tree	Graph	Generated at 2022-09-20 04:
	E3 wrappers and pipeline statuses 150	
	Description	
	ADAndor pipeline passed	
	e3 wrapper for EPICS areaDetector driver for CCD detectors from Andor Technology using Version 2 of the Andor Software Development Kit (SDK).	
	ADAndor3 pipeline passed	
	ESS Site-specific module : ADAndor3	
	adaravis pipeline passed	
	ADCore pipeline passed	
	ESS Site-specific module : ADCore	
	ADCSimDetector pipeline passed	
	ESS Site-specific EPICS module : ADCSimDetector	
	ADGeniCam pipeline passed	
	ESS Site-specific EPICS module : ADGenICam	
	ADGraphicsMagick pipeline passed	
	None	
	adifc14 pipeline failed	
	F3 wrapper for adifc14 module: areaDetector driver for IOxOS IFC1410 rupping standard data acquisition (scope) firmware	