
whatrecord

Ken Lauer

LCLS, SLAC National Accelerator Laboratory

September 23rd, 2022

https://github.com/pcdshub/whatrecord/

https://github.com/pcdshub/whatrecord/

2

Motivation

EPICS IOCs/modules/extensions are comprised of a conglomeration of weird file formats:

• Process database files (.db)

• Database definition files (.dbd)

• Template / substitutions files

• IOC shell scripts (st.cmd)

• StreamDevice protocols (.proto)

• State notation language programs (.st)

• Gateway configuration (.pvlist)

• Access security files (.acf)

• Facility-specific things like LCLS’s IOC manager configuration

• Build system Makefiles

• …

At the LCLS, we have somewhere around 3,000 IOC instances in total – including those from the

accelerator side and the photon side.

3

Motivation

Wouldn’t it be neat if…

• We could easily parse those formats outside of an IOC and represent them

in a widely-used interchange format like JSON?

• We could understand a bit better what’s in our existing IOCs, whether they

are deployed and running or not?

• We could see how different records, different IOCs, all relate to one

another… without even running an IOC?

• We could somehow jump from a PV name to its database file/record

definition/st.cmd/IOC?

• We could dive a bit deeper by linking records to PLC code? To

StreamDevice protocol information? To gateway access rules? Shell

commands to source code, even?

4

whatrecord: supported parsing tools

Parse any of the following into intuitive Python dataclasses using lark:

• Database files (V3 or V4/V7), database definitions, template/substitution files

• Access security configuration files

• Autosave .sav files

• Gateway pvlist configuration files

• StreamDevice protocol files

• snlseq/sequencer state machine parsing

Interpret IOC shell scripts (i.e., st.cmd) and track:

• What files were loaded during startup?

• What records are available?

• What errors were found?

• What file and line did record X get loaded?

• Inter- or intra-IOC record relationships

https://github.com/pcdshub/whatrecord https://pypi.org/project/whatrecord/

https://github.com/pcdshub/whatrecord
https://pypi.org/project/whatrecord/

5

whatrecord core: other things

EPICS build system Makefile introspection

• sumo-inspired implementation, but only JSON details or dependency graph output

GDB Python script that inspects binary symbols to find IOC shell commands,

variables and source code context

dbLoadRecords [str: filename] [str: substitutions]

modules/database/src/ioc/db/dbIocRegister.c line 53

Accurate EPICS macro handling (epics-base macLib, wrapped with Cython in

epicsmacrolib (GitHub; PyPI)

Plugins for loading happi devices, TwinCAT PLC projects, IOC information from

LCLS’s IOC manager, …

• Process database record -> PLC source code definition

https://github.com/pcdshub/epicsmacrolib
https://pypi.org/project/epicsmacrolib/

6

whatrecord: accessing the parsed information

• Python API, command-line tools for some of the above things

• And a web-based API/backend server to monitor IOC scripts and serve

IOC/record information.

• Load up all EPICS IOCs (either user-specified or those listed in LCLS’s IOC manager

tool)

- Load the startup scripts

- Load all the databases and supported files

• Monitor loaded files for changes

• Provide a backend service for querying the information

• Based on the backend server, provide a frontend for easy access to that

information

• Vue.js-based frontend single-page application

• Search for records/IOCs/etc by name and dig into the details...

7

Demo Some screenshots

8

`whatrecord parse`: Quick example with jq

$ whatrecord parse whatrecord/tests/iocs/db/pva/iq.db |

jq '.records[] | [.name, .record_type, .fields.OUT.value]'

[

"$(PREFIX)Rate",

"ao",

"$(PREFIX)dly_.ODLY NPP"

]

[

"$(PREFIX)Delta",

"ao",

null

]

...

$ whatrecord parse whatrecord/tests/iocs/db/pva/iq.db |

jq '.records[] | [.name, .info["Q:group"]]'

[

"$(PREFIX)Rate",

null

]

[

"$(PREFIX)Phase:I",

{

"$(PREFIX)iq": {

"phas.i": {

"+type": "plain",

"+channel": "VAL"

}

}

}

]

...

9

`whatrecord deps`:

Makefile-derived dependency graph tool

10

`whatrecord graph`: Intra/inter-IOC record graphs

11

`whatrecord graph`: State notation language transition diagrams

12

`whatrecord server` Vue.js frontend: IOC listing

13

Web frontend: record details

14

Web frontend: startup script line information

15

Web frontend: startup script line lint

16

Web frontend: Record to StreamDevice information

17

Web frontend: PVAccess group information

18

Web frontend: ASGs

19

Web frontend: IOC/record relationship map

20

Web frontend: miscellaneous

Gateway pvlist entries

Duplicate records in more than one IOC

21

Web frontend: happi (ophyd Device database) entries

22

What isn’t whatrecord?

It isn’t for live views: no PVAccess and no Channel Access.

As a toy/side-project with no charge code:

• It isn’t well-documented (bet you didn’t see that one coming)

• But there are nice docstrings, generally!

• It isn’t error-free/bug-free

• It aims to be as compliant as possible when parsing the files, but there may be

discrepancies

• It isn’t a good example of how to store relational data or do web development

• Goal was breadth-first whim-first:

- Parse and interpret everything: in-memory dataclasses storing all information

- Get it to be displayed in a friendly way

• Database-backed information along with and corresponding backend/frontend changes

may need to be pursued

23

Trying it out

Easiest method to try the frontend/backend as shown in the slides is

with docker:

$ git clone https://github.com/pcdshub/whatrecord

$ cd whatrecord/docker

$ docker-compose up

(Wait a couple minutes, then open http://localhost:8896 in browser)

Or try the parsing tools with just Python (3.8+):

$ pip install whatrecord

$ whatrecord --help

https://github.com/pcdshub/whatrecord
http://localhost:8896/

24

Thank you for your time.

25

Backup

26

Your browser to the server

Worker subprocesses

API server

iocmanager-

loader

Parse

st.cmd

Parse

st.cmd

happi

finder

pytmc

loader

Frontend

server

Your web browser tab

#683

27

Grammar-based parsing?

database: record*

record: "record" record_head record_body?

record_head: "(" string "," string ")"

record_body: "{" record_field* "}"

record_field: "field" "(" string "," string ")"

| "info" "(" string "," string ")" -> record_field_info

| "alias" "(" string ")" -> record_field_alias

EBNF Grammar rules - simplified excerpt from the V3 database grammar:

Using a pure-Python parsing library “lark”:

• Take the above to make a .db file into a set of tokens.

• Take those tokens and put them in a useful data structure.

https://github.com/pcdshub/whatrecord/tree/master/whatrecord/grammar

https://github.com/lark-parser/lark/
https://github.com/pcdshub/whatrecord/tree/master/whatrecord/grammar

