
TwinCAT – EPICS
with motion timestamping

Torsten Bögershausen

www.europeanspallationsource.se

Buzz words

⚫ Imaging+scanning (tomography)

⚫ All data in Apache Kafka

⚫ Facility-wide timing system (”MRF”)

⚫ Precise Timing Protocol

⚫ TwinCAT

⚫ Motor position timestamping in the controller

⚫ EPICS IOC

YMIR

Light tomography

Control screen

Timestamping – what, how

⚫ Motor positions and EPICS:
- Motor positions are “acquired” in MCU

⚫ Visible in EPICS motorRecord (“.RBV”)

⚫ EPICS records are “timestamped” in
the IOC, when they are processed.

⚫ Roundtrip times of a poll:
- 10..20 msec/axis (1st gen: EPICScom module)
- 5..10 msec/axis (2nd gen: twincat-ads)
- 5..15 msec all axes (3rd gen: PILS)

Old communication MCU-EPICS

⚫ 10 msec roundtrip / axis:

⚫ We run into a limitation:

8 axes: 80 msec poll time
16 axes 160 msec poll time

⚫ Motor positions of different axes
are ”someone somewhere somewhen”

Timestamping – not accurate enough

⚫ For positioning: 100 msec is good enough
(many axes)

⚫ E.g. tomography needs something better:
specs ???

⚫ specNotYetFullyDefinedException @ ESS

⚫ Our assumption:
<= 1 msec is good enough for scanning

Time stamping in MCU/PLC

⚫ Each PLC cycle (every 10msec):

⚫ Read all motorPositions

⚫ Read status of all axes (error, busy, homed, LS)

⚫ Read other sensors

⚫ Gets UTC from timing system

⚫ Put everything into continuous memory block

⚫ EPICS IOC polls this every 10..1000 msec

Timing system; PTP

⚫ An EVR acts as a PTP master (chrony on eth2)

⚫ TwinCAT needs a PTP terminal: EL6688

⚫ Needs to be configured (in TwinCAT)

⚫ Needs to be evaluated

PTP Offset master - EL6688

PTP Offset master - glitch

Transport protocol TwinCAT - EPICS

⚫ Raw TCP Socket ? Or: ADS
(locked against PLC cycle)

⚫ ADS_READ (start, length),
ADS_WRITE (start, length)

⚫ Application protocol ”on top” : ”PILS”
(the 3rd generation)

Memory layout – Runtime data

⚫ Poll data, example:

Date/Time (UTC)

Additional IO

Motor1 (position, status)

Motor2

Motor3

⚫ PILS gives us a description

IOC::asynPortDriver::poll()

⚫ IOC reads all data with every poll()

⚫ Distributes it into the different Records
(asyn parameters)

⚫ Calls asyn::setTimeStamp()

⚫ We have additional ai PVs:
”PR-RBV-TSE.VAL” for the motor position
”PR-RBV-TSE.TIME” derived from MRF->PTP

PILS

⚫ Credits to:

⚫ PLC Interface Layout Specification

⚫ https://forge.frm2.tum.de/public/doc/plc/ma
ster/singlehtml/#device-address

⚫ (Introduction/Lessons on request)

https://forge.frm2.tum.de/public/doc/plc/master/singlehtml/#device-address

Next steps

⚫ Verification that everything works
(“kafka has good data”)
(motors, detectors, cameras)

⚫ Ongoing project:
Light tomography with a camera

Questions

⚫ hvala

⚫ thanks

⚫ tack

⚫ danke

⚫ Merci

Links

⚫ https://kafka.apache.org/

⚫ https://en.wikipedia.org/wiki/Precision_Time_Protocol

⚫ https://www.beckhoff.com/en-en/products/i-o/ethercat-terminals/el6xxx-

communication/el6688.html

⚫ https://forge.frm2.tum.de/public/doc/plc/master/singlehtml/#device-

address

⚫ https://www.ijs.si/time/

https://www.beckhoff.com/en-en/products/i-o/ethercat-terminals/el6xxx-communication/el6688.html
https://forge.frm2.tum.de/public/doc/plc/master/singlehtml/#device-address
https://www.ijs.si/time/

