
Smaller and Faster:

Data Compression in

areaDetector
Slides: Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

EPICS meeting, ITER, June 2019

Presenter: Ulrik Kofoed Pedersen, Head of Beamline Controls

Demo: Gary Yendell

Diamond Light Source

• ADCore releases since 2018: R3-4, R3-5, R3-6

• This talk:

– New data compression features

– Demo of data compression

– Other major features from these releases

Outline

• We are already in the era of “big data” with existing detectors.

Eiger, Pilatus, Lambda, PCO, FLIR/Point Grey, Xspress 3, etc.

– Can all produce data faster than most disk systems can handle

– All exceed 1 Gbit network capacity, and some exceed 10 Gbit.

– Rapidly fill up disks

• Will become a more serious issue with synchrotron upgrades

– Increased count rates will allow existing detectors to run at their

maximum speed

– New generations of even faster detectors will be coming

• Data compression can help with these issues

– Must be fast and easy to use

Data Compression Motivation

Support for Compressed NDArrays and NTNDArrays

• NDArray has 2 new fields to support compression

• .codec field (struct Codec_t) to describe the compressor

typedef enum {

NDCODEC_NONE,

NDCODEC_JPEG,

NDCODEC_BLOSC,

NDCODEC_LZ4,

NDCODEC_BSLZ4

} NDCodecCompressor_t;

typedef struct Codec_t {

std::string name; /**< Name of the codec */

int level; /**< Compression level. */

int shuffle; /**< Shuffle type. */

int compressor; /**< Compressor type */

• .compressedSize (size_t) field with compressed size if codec.name is

not empty.

• pvAccess NTNDArray has always had .compressedSize and .codec

fields, but never previously implemented in servers or clients

NDPluginCodec (R3-4)

• New plugin for data compression and

decompression

• Written by Bruno Martins from FRIB

• Mode:

• Compress or Decompress

• Compressor:
• None

• JPEG (JPEGQuality selection)

• Blosc (many options, next slide)

• LZ4

• BSLZ4 (Bitshuffle/lz4)

• CompFactor_RBV:
• Actual compression ratio

• CodecStatus, CodecError

• JPEG is lossy, all others lossless

Blosc Codec Options

• BloscCompressor options. Each has different compression

performance and speed
• BloscLZ

• LZ4

• LZ4HC

• Snappy

• Zlib

• Zstd

• BloscCLevel
• Compression level: 0=no compression, 9=maximum compression.

• Increasing execution time with increasing level.

• BloscShuffle
• Choices = None, Byte, Bit.

• Differences in speed and compression performance.

• BloscNumThreads
• Number of threads used to compress each NDArray

LZ4 and BSLZ4 Codecs

• These are the codecs used by the Eiger server from Dectris
• They don’t use the Blosc codecs, but rather the native LZ4 and

Bitshuffle/LZ4 codecs.

• Dectris server can optionally use these compressions for

HDF5 files saved locally on their server

• Dectris server always uses one of these compressions for data

streamed over the ZeroMQ socket interface to the ADEiger

driver

• These can now be decoded directly in ADEiger, or passed as

compressed NDArrays to NDPluginCodec and other plugins

• Compressed arrays can be passed directly to NDFileHDF5 to

be written with newly supported direct chunk write feature.

More on this later.

Codec Parameter Records (R3-5)

• Codec_RBV and CompressedSize_RBV records to

asynNDArrayDriver and hence to all plugins.

HDF5 Changes (R3-5 & R3-6)
• NDFileHDF5 file writing plugin has always supported the “built-

in” compression filters from HDF5:
• N-bit
• SZIP
• ZLIB

• HDF5 Dynamically Loadable Filters (ref)

• R3-3 added support for Blosc filters
• Thanks Xiaoqiang Wang, PSI

• New support for LZ4 and Bitshuffle/LZ4 filters
• All of these compressors are called from the HDF5 library.

• Limits performance because of the overhead of the library.

• New support for HDF5 “Direct Chunk Write” (ref)(Use R3-6)
• The NDArrays can be pre-compressed, either in NDPluginCodec, or

directly by the driver (e.g. ADEiger)
• Much faster, much of the code in the HDF5 library is skipped.
• Thanks Gary Yendell, Diamond Light Source

• Fixed a number of memory leaks, some were significant
• Added FlushNow record to force flushing datasets to disk in

SWMR mode

https://support.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/
https://confluence.hdfgroup.org/x/WNnoAg

HDF5 Direct Chunk Write Performance
• 1024x1024 32-bit images

• simDetector generating ~1350 frames/s = 5.4 GB/s.

• Blosc LZ4 ByteShuffle compression
• Compression level 6.

• NDPluginCodec

• 6 Blosc threads

• 3 plugin threads.

• Compression factor is ~64

• Time to save a single HDF5 file with 10,000 frames.

No

compression

NDFileHDF5

compression

NDPluginCodec

compression, direct

chunk write

File size (MB) 40,000 650 650

Total time (s) 106 32 7.4

Frame/s 94 312 1,351

MB/s uncompressed 389 1,250 5,405

MB/s compressed N.A. 20 88

• HDF5 library can only compress 312 frames/s

• NDPluginCodec & direct chunk write keeps up with simDetector 1,350 frames/s

HDF5 Decompression Plugin Filters

(ADSupport R1-7)

• HDF5 supports dynamic loading of compression and

decompression filter libraries at run time.

• The Blosc, LZ4 and BSLZ4 have been built into the HDF5 library

in ADSupport so that dynamic loading is not required when using

NDFileHDF5.

• However, to decompress HDF5 files compressed with Blosc, LZ4

or BSLZ4 with other applications dynamic loading of the filters

will be required

• ADSupport now builds these dynamic filter libraries for Linux,

Windows, and Mac.

• Must set the following environment variable to use them:

HDF5_PLUGIN_PATH=[areaDetector]/ADSupport/lib/linux-x86_64

HDF5 Decompression Plugin Filters

>h5dump --properties test_hdf5_direct_chunk_3.h5

HDF5 "test_hdf5_direct_chunk_3.h5" {

GROUP "/" {

GROUP "entry" {

…

DATASET "data" {

DATATYPE H5T_STD_U32LE

DATASPACE SIMPLE { (100, 1024, 1024) / (100, 1024, 1024) }

STORAGE_LAYOUT {

CHUNKED (1, 1024, 1024)

SIZE 4082368 (102.742:1 COMPRESSION)

}

FILTERS {

USER_DEFINED_FILTER {

FILTER_ID 32001

COMMENT blosc

PARAMS { 2 2 4 4194304 8 1 1 }

}

}

…

DATA {

(0,0,0): 173140, 173141, 173142, 173143, 173144, 173145, 173146,

(0,0,7): 173147, 173148, 173149, 173150, 173151, 173152, 173153,

(0,0,14): 173154, 173155, 173156, 173157, 173158, 173159, 173160,

(0,0,21): 173161, 173162, 173163, 173164, 173165, 173166, 173167,

Demo

Compression

ImageJ pvAccess Viewer
• Now supports displaying compressed NTNDArrays

• Supports all compressions (JPEG, Blosc, LZ4, BSLZ4)

• Can greatly reduce network bandwidth when the IOC and

viewer are running on different machines

Blosc compression

No compression

ADEiger Changes

• Now supports Bitshuffle/LZ4 on Stream interface over

ZeroMQ
• Previously only LZ4 was supported

• New StreamDecompress bo record to enable/disable

decompression. If disabled:
• NDFileHDF5 can use Direct Chunk Write without ever

decompressing

• NDPluginPva can send to ImageJ without ever

decompressing

• NDPluginCodec can decompress for other plugins like

NDPluginStats, etc.

• Eiger Simplon API version 1.6 -> 1.8 changes WIP

• https://github.com/areaDetector/ADEiger/pull/27

https://github.com/areaDetector/ADEiger/pull/27

ADEiger Changes

Improvements in ADCore (R3-4)

• New MaxByteRate record for plugins to limit “output rate”
• For most plugins this limits the byte rate of the NDArrays passed to

downstream plugins

• For NDPluginStdArrays it limits the byte rate of the data callbacks to

waveform records, and hence to Channel Access clients

• For NDPluginPva it limits the byte rate of the data callbacks to

pvAccess clients

• Optimization improvement when output arrays are sorted.
• Previously it always put the array in the sort queue, even if the order

of this array was OK.

• Introduced an unneeded latency because the sort task only runs

periodically.

• Caused ImageJ update rates to be slow, because it made PVA output

comes in bursts, and some arrays were dropped either in the pvAccess

server or client.

• Now if the array is in the correct order it is output immediately.

Documentation Improvements (R3-5)
• Documentation was changed from manually edited HTML

pages to reStructuredText (.rst) files processed with Spinx.
• Most tables are left in native HTML because .rst conversion is poor

quality

• Server changed from https://cars.uchicago.edu/software/epics/

to areaDetector.github.io/

• Advantages:
• Easier to edit

• Nicer looking pages

• New Travis CI job at top-level areaDetector
• Runs doxygen and sphinx to update the areaDetector.github.io files

every time there is a push to the top-level areaDetector repository.

• Thanks to Stuart Wilkins from BNL who set up the process

and converted all of the files in ADCore, ADProsilica, and

ADFastCCD.

• Other detector repositories still need to be converted.
• Use pandoc to convert .html to .rst. Manual editing still required.

NDPluginAttribute Time Series (R3-5)

• Previously NDPluginAttribute time series code was internal

• Changed so that it now uses NDPluginTimeSeries, same

change that was made to NDPluginStats in R3-5

• Fewer lines of code, and adds Circular Buffer mode

• The time-series waveform PVs are the same

• The PVs to control the time-series (start/stop, # of points)

have changed, so clients may need modifications

NDPluginAttribute Time Series (R3-5)

Roadmap: ADCore R5-0?

• Use NTNDArrays inside drivers and plugins

• Use pvDatabase

– “local” provider within IOC

– “pva” provider between IOCs

• Smart pointers automatically eliminate all unnecessary copying

• Eliminates need for NDPluginPva

• V4 clients can immediately receive data from any point in

plugin chain

• Distribute load to multiple IOCs without pvaDriver

• Bruno Martins has demonstrated this working for

ADSimDetector and NDPluginStats

