
areaDetector: A module for

EPICS area detector support
Slides (2018): Mark Rivers

GeoSoilEnviroCARS, Advanced Photon Source

University of Chicago

EPICS meeting, ITER, June 2019

Presenter: Ulrik Kofoed Pedersen, Head of Beamline Controls

Demo: Gary Yendell

Diamond Light Source

• Motivation & goals for areaDetector module

• Overview of architecture

• Drivers for detectors & cameras

• Plugins for real-time processing

• Viewers and other clients

• Demo with simDetector

areaDetector Talk Outline

areaDetector - Goals

• Drivers for many detectors popular at synchrotron beamlines

– Handle detectors ranging from >500 frames/second to <1 frame/second

• Basic parameters for all detectors

– E.g. exposure time, start acquisition, etc.

– Allows generic clients to be used for many applications

• Easy to implement new detector

– Single device-driver C++ file to write. EPICS independent.

• Easy to implement detector-specific features

– Driver understands additional parameters beyond those in the basic set

• Middle-level plug-ins to add capability like regions-of-interest

calculation, file saving, etc.

– Device independent, work with all drivers

– Below the EPICS layer for highest performance

• NDArray

– N-Dimensional array.

• Everything is done in N-dimensions (up to 10), rather than 2. This is
needed even for 2-D detectors to support color.

• Other types of devices (Xspress3 and xMAP x-ray spectrometers, quad
electrometers also use NDArrays and areaDetector plugins.

– This is what plug-ins callbacks receive from device drivers.

• NDAttribute

– Each NDArray has a list of associated attributes (metadata) that
travel with the array through the processing pileline. Attributes can
come from driver parameters, any EPICS PV, or any user-written
function.

• Can store motor positions, temperature, ring current, amplifier gains,
etc. with each frame.

• Written to disk files for TIFF, netCDF, and HDF5 file formats.

• NDArrayPool

– Allocates NDArray objects from a freelist

– Plugins access in readonly mode, increment reference count

– Eliminates need to copy data when sending it to callbacks.

areaDetector – Data structures

ADBase

.template

Standard asyn device support

(device-independent)

Vendor API

Driver

Channel Access Clients (CSS, medm, Python, ImageJ, SPEC, etc.)

EPICS areaDetector Architecture

xxxDriver

.template

Hardware

C++ Base classes

(NDArray,

asynPortDriver,

asynNDArrayDriver,

ADDriver,

NDPluginDriver)

Layer 5

Standard

EPICS records

Layer 4

EPICS device

support

Layer 3

Plug-ins

Layer 1

Hardware API

Layer 2

Device drivers

Layer 6

EPICS CA clients

StdArrays
File

(HDF5, netCDF,

TIFF, JPEG)

NDPluginXXX.

template

Channel access

Record/device support

asynInt32, Float64, Octet

asynGenericPointer (NDArray)

asynXXXArray

C library calls

NDPluginBase

.template

ROIProcess

Detector Drivers
Currently 33 detector drivers covering a wide variety of detectors.

• Simulation driver

• GigE cameras (Prosilica/AVT, Point Grey/FLIR, any GigEVision
camera via aravis library)

• Point Grey USB-3.x cameras

• Dectris Pilatus and Eiger pixel array detectors

• Princeton Instruments and Photometrics detectors and
spectrometers

• Andor CCD and CMOS cameras

• Perkin Elmer and Dexela flat panel detectors

• Web cameras and Axis video servers

• Many more (Bruker, Pixirad, Photonic Sciences, etc.)

ADBase.adl – Generic control screen

• Works with any

detector

• Normally write custom

control for each

detector type to hide

unimplemented

features and expose

driver-specific features

simDetector: Detector-specific screen

• Example

• 1024x1024 pixels

• 16-bit integer images

• 485 frames/s

• ~1GB/s

• 3 simulation modes, LinearRamp, Peaks, Sine Waves.

• Independent gains for X, Y, Overall, Red, Green, Blue

• Linear ramp has X and Y linear ramp with array index, each

cycle just adds value to each pixel. Very fast.

• Peak mode is array of Gaussian peaks plus noise. Slower.

• Sine mode is 2 sine waves in each of Y and Y, summed or

multiplied. Slower.

simDetector Driver

simDetector: Linear Ramp Mode

simDetector Peaks mode with FFT

simDetector: Sine mode

Pilatus specific control screen

URL Driver

• Driver that can read images from any URL.

• Can be used with Web cameras and Axis video servers.

• Uses GraphicsMagick to read the images, and can thus handle a large number
of image formats (JPEG, TIFF, PNG, etc.).

• Driver for all cameras from Point Grey using their FlyCap2

SDK.

• GigE, USB 3.0, and 10 GigE camera

• High performance, low cost

• ADSpinnaker driver which uses their new Spinnaker SDK.

Required for their newest camera models like BlackFlyS and

Oryx 10-GBit Ethernet.

Point Grey drivers

- e2v EV76C570 CMOS sensor

- Global shutter

- 29 x 29 x 30 mm

- Power Over Ethernet

- 4.5 micron pixels

- 1600 x 1200 pixels, color or mono)

- 50 frames/s

- $525

- 5X cheaper than comparable Prosilica cameras we bought in the past

Point Grey GigE Camera

BlackFly PGE-20E4C

• 1920 x 1200 global shutter CMOS

• Sony IMX174 1/1.2

• Dynamic range of 73 dB

• Peak QE of 76%

• Read noise of 7e-

• 12-bit or 8-bit data

• Max frame rate of 162 fps

– ~356 MB/S, >3X faster than GigE

• USB 3.0 interface

• Now used for tomography at 3 APS beamlines, replaced Andor

Neo and PCO Edge

• $995

Point Grey USB-3.0 Camera

Grasshopper3 GS3-U3-23S6M

• 2448 x 2048 global shutter CMOS

• Sony IMX250 2/3”

• Dynamic range of 72 dB

• Peak QE of 62%

• Read noise of 2.2e-

• 12-bit, 10-bit, or 8-bit data

• Max frame rate of 162 fps

– 779 MB/S, >8X faster than GigE

• $1,875

Point Grey 10-Gbit Ethernet Camera

Oryx ORX-10G-51S5C-C

Point Grey Driver

Point Grey Driver (Grasshopper3 camera)

Plugins

• Designed to perform real-time processing of data, running in the
EPICS IOC (not over EPICS Channel Access)

• Receive NDArray data over callbacks from drivers or other
plugins

• Plug-ins can execute in their own threads (non-blocking) or in
callback thread (blocking)

– If non-blocking then NDArray data is queued

– If executing in callback thread, no queuing, but slows driver

• Allows

– Enabling/disabling

– Throttling rate (no more than 0.5 seconds, etc)

– Changing data source for NDArray callbacks to another driver or plugin

• Plugins can be sources of NDArray callbacks, as well as
consumers

– Allows creating a data processing pipeline running at very high speed,
each in a different thread, and hence in multiple cores on modern CPUs.

NDPluginDriver medm Screens

Plugins (continued)

• Currently 20 plugins that perform wide variety of operations

• NDPlugInStdArrays

– Receives arrays (images) from device drivers, converts to standard arrays, e.g.

waveform records.

– This plugin is what EPICS channel access viewers normally talk to.

• NDPluginPVA
– Converts NDArrays to EPICS V4 NTNDArrays

– Exports the NtNDArrays over PVAccess with internal V4 server

– Can be used to send structured data to EPICS V4 clients

– When used with the PVAccess driver then areaDetector plugins can be run on
different machine from the detector driver

• NDPluginROI

– Performs region-of-interest calculations

– Select a subregion. Optionally bin, reverse in either direction, convert data type.

– Divide the array by a scale factor, which is useful for avoiding overflow when

binning.

• NDPluginTransform

– Performs geometric operations (rotate, mirror in X or Y, etc.)

• NDPluginStats
– Calculates basic statistics on an array (min, max, sigma)

– Optionally computes centroid centroid position, width and tilt.

– Optionally Computes X and Y profiles, including average profiles,
profiles at the centroid position, and profiles at a user-defined cursor
position.

– Optionally computes the image histogram and entropy

• NDPluginROIStat
– Multiple ROIs with simple statistics in a single plugin

– More efficient when many ROIs are needed, e.g. for peaks in a 1-D
energy spectrum

– Min, max, total, net, mean

– Time-series of each of these statistics

Plugins (continued)

• NDPluginProcess
– Does arithmetic processing on arrays

– Background subtraction.

– Flat field normalization.

– Offset and scale.

– Low and high clipping.

– Recursive filtering in the time domain.

– Conversion to a different output data type.

• NDPluginOverlay
– Adds graphic overlays to an image.

– Can be used to display ROIs, multiple cursors, user-defined boxes,
text, etc.

• ffmpegServer

– MJPEG server that allows viewing images in a Web browser. From

DLS.

Plugins (continued)

• NDPluginAttribute
– Extracts NDAttributes from NDArrays and publishes their values as

ai records

– Can collect time-series arrays of the attribute values

• NDPluginCircularBuff
– Buffers NDArrays in a circular buffer

– Computes a trigger expression using up to 2 NDAttribute values

– When trigger condition is met then outputs NDArrays

– User-specified number of pre-trigger and post-trigger arrays to
output

• NDPluginTimeSeries
– Accepts 1-D NDArrays[NumSignals] or 2-D

[NumSignals,NewTimePoints] and appends to time-series buffer

– Operates in fixed length (stop when full) or circular buffer modes

– Optional time-averaging of input data

Plugins (continued)

• NDPluginFFT
– Computes FFT of 1-D or 2-D NDArrays

– Exports NDArrays containing the absolute value (power spectrum)
of the FFT

– Exports 1-D arrays of the FFT real, imaginary, absolute values, and
time and frequency data.

• NDPluginColorConvert

– Convert from one color model to another (Mono, RGB1 (pixel), RGB2

(row) or RGB3 (planar) interleave)

– Bayer conversion removed from this plugin, now part of Prosilica and Point

Grey drivers.

Plugins (continued)

commonPlugins.adl All plugins at a glance

ROI plugin

Statistics plugin

Statistics plugin (continued)

Overlay plugin

Centroid of laser pointer calculated by
statistics plugin

Cursor overlay X, Y position linked to
centroid

Processing plugin

Processing plugin

30 microsec exposure time
No filtering N=100 recursive average filter

Transform plugin

• New plugin that converts NDArrays into the

EPICS v4 normative type NTNDArray

• Embedded EPICSv4 server serves the new

NTNDArray structure as an EPICSv4 PV

• High performance, ~3.2GB/s shown here

• Can be received by any EPICS v4 client

– Java, Python, C++ versions of pvAccess

– CSS has a widget that can display NTNDArrays

– New ImageJ plugin

– Can include an NTNDArray receiver in another IOC

• From Bruno Martins

NDPluginPva (EPICS V4/7)

• Logical inverse of NDPluginPva

• Receives NTNDArrays over the

network, converts to NDArrays

and calls plugins

• Can be used to run areaDetector

IOC and plugins on another

machine or in another process

• High performance:

– ~1.2 GB/s shown here with

interprocess communication

– Saturating 10 Gb Ethernet links has

been demonstrated

• From Bruno Martins

pvAccess Driver (EPICS V4)

Demo

• ADSimDetector

• ImageJ viewer

• Plugins

– Transform

– ROI

– Proc

– Stats

Plugins: NDPluginFile

• Saves NDArrays to disk

• 3 modes:

– Single array per disk file

– Capture N arrays in memory, write to disk either multiple files or
as a single large file (for file formats that support this.)

– Stream arrays to a single large disk file

• For file formats that support it, stores not just NDArray
data but also NDAttributes

Plugins: NDPluginFile

• File formats currently supported

– NDFileTIFF

• Supports any NDArray data type

• Stores NDAttributes as ASCII user tags

– NDFileJPEG

• With compression control

– NDFileNetCDF

• Popular self-describing binary format, supported by Unidata at UCAR

– NDFileHDF5
• Writes HDF5 files with the native HDF5 API, unlike the NeXus plugin which uses

the NeXus API. Supports 3 types of compression.

• Supports using an XML file to define the layout and placement of NDArrays and
NDAttributes in the HDF5 file

• Support Single Writer Multiple Reader (SWMR). Only supported on local file
systems, GPFS, and Lustre (not NFS or SMB)

Plugins: NDPluginFile

• File formats currently supported

– NDFileNeXus

• Standard file format for neutron and x-ray communities, based on HDF5, which is
another popular self-describing binary format; richer than netCDF

• May be deprecated in a future release since NeXus files can now be produced with
the NDFileHDF5 plugin using an appropriate XML layout file

– NDFileMagick

• Uses GraphicsMagick to write files, and can write in dozens of file formats,
including JPEG, TIFF, PNG, PDF, etc.

– NDFileNull

• Used only to delete original driver files when no other file plugin is running

File saving with driver

• In addition to file saving plugins, many vendor
libraries also support saving files (e.g. marCCD,
mar345, Pilatus, etc.) and this is supported at the driver
level.

• File saving plugin can be used instead of or in addition
to vendor file saving

– Can add additional metadata vendor does not support

– Could write JPEGS for Web display every minute, etc.

NDPluginFile display: TIFF

Example: saving 82 frames/second of 1024x1024 video to

TIFF files, a few dropped frames.

NDFileHDF5

NDFileHDF5

XML file to define file layout
<xml>

<group name="entry">

<attribute name="NX_class" source="constant" value="NXentry" type="string"></attribute>

<group name="instrument">

<attribute name="NX_class" source="constant" value="NXinstrument" type="string"></attribute>

<group name="detector">

<attribute name="NX_class" source="constant" value="NXdetector" type="string"></attribute>

<dataset name="data" source="detector" det_default="true">

<attribute name="NX_class" source="constant" value="SDS" type="string"></attribute>

<attribute name="signal" source="constant" value="1" type="int"></attribute>

<attribute name="target" source="constant" value="/entry/instrument/detector/data"

type="string"></attribute>

</dataset>

<group name="NDAttributes">

<attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute>

<dataset name="ColorMode" source="ndattribute" ndattribute="ColorMode">

</dataset>

</group> <!-- end group NDAttribute -->

</group> <!-- end group detector -->

<group name="NDAttributes" ndattr_default="true">

<attribute name="NX_class" source="constant" value="NXcollection" type="string"></attribute>

</group> <!-- end group NDAttribute (default) -->

<group name="performance">

<dataset name="timestamp" source="ndattribute"></dataset>

</group> <!-- end group performance -->

</group> <!-- end group instrument -->

<group name="data">

<attribute name="NX_class" source="constant" value="NXdata" type="string"></attribute>

<hardlink name="data" target="/entry/instrument/detector/data"></hardlink>

<!-- The "target" attribute in /entry/instrument/detector/data is used to

tell Nexus utilities that this is a hardlink -->

</group> <!-- end group data -->

</group> <!-- end group entry -->

</xml>

Multiple Threads per Plugin

• Support for multiple threads running the processCallbacks()
function in a single plugin.

• Can improve the performance of the plugin by a large factor.

• Linear scaling with up to 5 threads (the largest value tested)
observed for most of the plugins that now support multiple
threads.

• Maximum number of threads that can be used for the plugin is
set in constructor and in IOC startup script.

• Actual number of threads to use controlled via an EPICS PV at
run time, up to the maximum value.

• Optional sorting of NDArrays by uniqueId to attempt to output
them in the correct order.
• Several new parameters to control this option

• Plugins needed minor modifications to be thread-safe for
multiple threads running in a single plugin object.

• Most compute-intensive plugins now support multiple threads.

Multiple Threads per Plugin

1 Thread

Multiple Threads per Plugin

3 Threads

Multiple Threads per Plugin

5 Threads

NDPluginScatter

• Used to distribute (scatter) the processing of NDArrays to
multiple downstream plugins
• Allows multiple instances of a plugin to process NDArrays in parallel,

utilizing multiple cores to increase throughput.

• Utilizes modified round-robin for choosing next output plugin

• More complex than multiple threads in a single plugin, but
allows the plugins running in parallel to have different
configurations or even be different plugins

NDPluginGather
• Merges NDArrays from multiple upstream plugins into a single

output stream.

• Designed to work with NDPluginScatter

• Optional sorting by uniqueId

Distributed Processing with

NDPluginScatter + EPICS V4
Distribute HDF5 file writing to multiple IOCs (4096 x 3078 8-bit)

IOCs Files/sec GB/sec

1 101.0 1.19

2 195.2 2.29

3 217.5 2.55

NDPluginPva NDPluginPva NDPluginPva

pvaDriver

NDFileHDF5

pvaDriver

NDFileHDF5

pvaDriver

NDFileHDF5

ADSimDetector

NDPluginScatter

IOC #1

IOC #2

IOC #3

IOC #4

Demo

• Multi threaded plugins

Viewers

• areaDetector allows generic viewers to be written

that receive images as EPICS waveform records

over Channel Access

• Current viewers include:

– ImageJ plugin EPICS_AD_Display. ImageJ is a very

popular image analysis program, written in Java, derived

from NIH Image.

– EPICS_NTNDA_Viewer. Same as above but uses

pvAccess rather than Channel Access.

– ffmpegServer allows image display in any Web browser

– ffmpegViewer high-performance Qt-based viewer for

MJPEG stream

Viewers - NDPluginPva Advantages

• NTNDArray data transmitted "atomically" over the network

– Channel Access requires separate PVs for the image data and the metadata

(image dimensions, color mode, etc.)

• With Channel Access data type of waveform record is fixed at

iocInit, cannot be changed at runtime.

– If the user wants to view both 8-bit images, 16-bit images, and 64-bit double FFT

images then waveform record needs to be 64-bit double, adding a factor of 8

network overhead when viewing 8-bit images.

– pvAccess changes the data type of the NTNDArrays dynamically at run-time,

removing this restriction.

• Channel Access requires setting EPICS_CA_MAX_ARRAY_BYTES

– Source of considerable confusion and frustration for users.

– pvAccess does not use EPICS_CA_MAX_ARRAY_BYTES and there is no

restriction on the size of the NTNDArrays.

Viewers

• ImageJ plugins for displaying Images from EPICS Channel Access

and pvAccess

• pvAccess plugin now supports decompression so compressed data

can be transmitted across the network

Viewers - advanced

• EPICS_AD_Controller. Allows using the ImageJ

ROI tools (rectangle and oval) to graphically

define the following:

– The readout region of the detector/camera

– The position and size of an ROI (NDPluginROI)

– The position and size of an overlay (NDPluginOverlay)

– The plugin chain can include an NDPluginTransform

plugin which changes the image orientation and an

NDPluginROI plugin that changes the binning, size,

and X/Y axes directions. The plugin corrects for these

transformations when defining the target object.

– Chris Roehrig wrote an earlier version of this plugin.

Other Drivers that use ADCore

• NDArrays are not limited to 2-D detectors

– File, ROI, and statistics plugs are useful for other types of

detectors

• Used for spectra arrays [NumMCAChannels,

NumDetectors, NumPixels] for:

– Xspress3 from Quantum Detectors

– xMAP, Mercury and new FalconX from XIA

• Used for time-series data [NumTimePoints, NumInputs]

for the quadEM quad electrometer software

– AH401, AH501, TetrAMM from CaenEls

– Two types of electrometers from BNL Instrumentation group

(Peter Siddons)

• Architecture works well, easily extended to new detector drivers,

new plugins and new clients

• Widely adopted

– APS, SLAC, NSLS-II, CHESS, DLS, PSI, ESS, Australian Synchrotron,

many others

• Base classes, asynPortDriver, asynNDArrayDriver,

NDPluginDriver actually are generic, nothing “areaDetector”

specific about them.

– Used to implement other N-dimension detectors, e.g. the XIA xMAP (16

detectors x 2048 channels x 512 scan points) and quadEM (electrometers

with 4 detectors x N time samples)

• Collaborative effort

– Major contributions from Diamond, NSLS-II, SLAC, PSI, many others

• Code available on Github: https://github.com/areaDetector

• Thanks for your attention

Conclusions

