

Simulation Driver Driver Develpment

Michael Davidsaver
Osprey DCS

How, When, … Why?

● Test driven development is great!
● How to do this with hardware drivers?
● Cost/benefit?

● HPI 6012/6016 radiation monitor
– Tx only serial/ethernet

● FEED (FPGA Embedded Ethernet Driver)

– UDP request/response

● CaenELS PICO8
– uTCA

● MRF EVR/EVG
– VME

Case studies

HPI 6012/6016

● Counter for use with various detector chambers
● Sends one line of text at 1Hz
● Simple right?

HPI 6012/6016 (2)

● Safety “related” device
● Closely scrutinized

– NSLS2 beam mis-steering incident

● Develop simulator and driver concurrently
● Cross-test driver with simulator and real HW

– Can test “impossible” faults

– Part of (re)validation after driver changes

HPI 6012/6016 (3)

● Simulator
– TCP server

– GUI interface

● Simulate
– Dose

– Device alarms

– Comm. faults

Output text

HPI 6012/6016 (4)

Testing process

============

Initial testing uses the hpisim3.py software device
simulation.

Repeat for both Original FW and Integrated Dose modes

...

Return the dose rate to 0

Verify that alarms clear

Reduce simulation dose rate to -0.05

Verify that the fail holdoff counter begins counting down

Verify that $(P)Alrm:Fail-Sts becomes active when the
counter reaches zero.

FEED (FPGA Embedded Ethernet Driver)

● UDP/IP request → response
● Register based
● Introspect device to get register name ↔ address mapping.

– Compressed JSON encoded in ROM

● Develop simulator and driver concurrently
● Cross-test driver with simulator and real HW

– Help identify FW (doc) issues

– Test (re)connection and timeout behavior

– Limited access to shared test stand

FEED Packet Format

● 8 byte header echoed
● 26 bit address space
● Only 4 byte access
● Read and Write

formats identical

0x0 0x1 0x2 0x3

0x00
Header/Tag

0x04

0x08 Bits Address 1

0x0C Data 1

0x10 Bits Address 2

0x14 Data 2

...

FEED simulator
./bin/linux-x86_64/feedsim -h
Usage: ./bin/linux-x86_64/feedsim [-hd] [-H <iface>[:<port>]] [-L none|rfs] [-S <sec>] <json_file> [initials_file]

● Load register description from file
● Optionally

– Provide initial register values

– Firmware specific logic
eg. waveform arm/wait/readout sequence

CaenELS PICO8

● uTCA fast digitizer (pico ammeter)
– PCIe w/ interrupts and DMA

● Develop simulator and driver(s) concurrently
– Update Linux kernel module

– Create EPICS driver

● FW bug in DMA handling
– Developed driver (mostly) in advance of working

HW

● QEMU emulator provides callbacks on MMIO
– static uint64_t sis_read(void *opaque, hwaddr addr, unsigned size) { ...

– static void sis_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { ...

– Lots of helpers for PCI device mechanics

● “Ultimate” bus analyzer

QEMU Device Models

$ qemu-system-x86_64 -device amc-pico-8,?
...
amc-pico-8.addr=int32 (Slot and optional function number, example: 06.0 or 06)
amc-pico-8.frib=bool
…
$ qemu-system-x86_64 -device amc-pico-8 ...

Everything except (most) timing!

Language files blank comment code

C 1 108 71 549

Models interrupts and
Scatter DMA

https://github.com/mdavidsaver/qemu/blob/vme/hw/misc/caen_pico8.c

https://github.com/mdavidsaver/qemu/blob/vme/hw/misc/caen_pico8.c

MRF EVR/EVG

● Event timing cards
– Various PCI/PCIe and VME

● Develop simulator with existing driver(s)
● Validate driver changes w/o access to HW

MVME3100 with QEMU

● Modeling MVME3100
– e500v2 CPU already supported

– Start from existing mpc8544ds

– Add I2C controller, eeprom, and RTC

– Bootloader w/ RTEMS

● Modeling TSI148 PCI ↔ VME bridge
– Really complicated device!

– VME bus infrastructure

How, When, Why

● How?
– Sockets (Serial) is easy

– MMIO w/ emulator

● When?
– Need to exercise handling of uncommon errors

– Lack access to (working) hardware

– Low-level tracing

– More predictable, but longer, development time

– $$$

● Why?
–

How, When, Why

● How?
– Sockets (Serial) is easy

– MMIO w/ emulator

● When?
– Need to exercise handling of uncommon errors

– Lack access to (working) hardware

– Low-level tracing

– More predictable, but longer, development time

– $$$

● Why?
– Simulator is my bubble!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

