

DE LA RECHERCHE À L'INDUSTRIE

EPICS MODULES TOOLKIT FOR RF TEST STANDS

Alexis Gaget Yves Lussignol

EPICS Meeting May 21st 2019

CEA IRFU Involved in the control system of the following projects:

- IFMIF : Injector, diagnostics, cavities.
- ESS: Injector, cavities couplers conditioning, test cavities demonstrator
- SARAF: Injector, cavities couplers conditioning, test cavities, rebuncher...
- ..

CEA IRFU Involved in the control system of the following projects:

- IFMIF : Injector, diagnostics cavities.
- ESS: Injector cavities couplers conditioning, text cavities demonstrator
- SARAF: Injector cavities couplers conditioning test cavities sebuncher...
- ...

Similar needs:

- Analysis of the RF signal
- Automatic RF conditioning sequence.

CEA IRFU Involved in the control system of the following projects:

- IFMIF : Injector, diagnostics cavities.
- ESS: Injector cavities couplers conditioning, text cavities demonstrator
- SARAF: Injector cavities couplers conditioning test cavities, rebuncher...
- ...

Similar needs:

- Analysis of the RF signal
- Automatic RF conditioning sequence.

Conditioning concept

« All existing high power couplers exhibit severe outgassing and multipacting barriers of vacuum and RF exposed surfaces, as a result of geometrical configurations and surface conditions (material, contaminants, finishing)."

These problems can be overcome by design and different procedures like cleaning, baking followed by RF Conditioning -application of RF power under various conditions and in various configurations:

- Pulsing the RF with different duty factors
- In continuous wave mode (CW)
- as traveling wave mode
- as standing wave mode
- Sweeping of frequency or RF power amplitude

Objective: to clean the surfaces from contaminants (molecular or particulate) and minimize conditions for multipacting. During this process the QA of different coupler components and associated instrumentation is obtained. »

Mircea Stirbet (Jefferson Lab)
RF Conditioning: Systems and Procedures

CEA IRFU standard method.

A **conditioning sequence** is composed of a set of **cycles** with the RF pulse width increased at each cycle.

A **cycle** is defined by a RF pulse width and is composed of a **RF power ramp** terminated by a **plateau**.

A **RF power ramp** is composed of a set of **steps** with the RF power increased at each step.

A **step** is defined by a RF power value and a number of RF pulses.

A plateau is defined by a RF power value and a number of RF pulses.

If the vaccum/temperature/leak (PM/Pue-) defect happen we insist on the zone, by pausing the RF power or decreasing it

Example

Example

CalibrationApp: is a support application module that allows to **convert** signal data contained in **waveform**.

- Breakpoint table EPICS (non linear conversion)
 - Standard
 - Apply to RF power signal conversion
 - Apply to Cavity field
- Polynomial function

- \$(SIGNAL)-Cal: waveform calibrated
- Records to configure signal (attenuation, field cavity, polynomial degree...etc)

SignalProcessing: is a support application module that computes **statistics** on a **signal waveform**. It manages **cursors** to delimit a pulse, uses **thresholds** to delimit the area of interest and creates a compressed signal for GUIs.

1000000

1000000

1000000

ConditioningSeq: is a support application module that allows to execute a sequence of RF conditioning.

```
epicsEnvSet("power", "PF704-RF:RFS-KAtt-01:kW")
epicsEnvSet("count", "PF704-RF:RFS-Kly-01:IncPwr-Cal:Trig")
epicsEnvSet("width", "PF704-EVR0:Pull-Width-SP")
epicsEnvSet("major", "PF704-Cpl:DefaultMajor")
epicsEnvSet("minor", "PF704-Cpl:DefaultMinor")
epicsEnvSet("critic", "PF704-Cpl:DefaultCritic")
epicsEnvSet("exp", "PF704-Cpl:Conditionning-01")

seq ConditionningWF "power=$(power), countPulse=$(count), width=$(width),
defaultMajor=$(major), defaultMinor=$(minor), defaultCritic=$(critic), Experiment=$(exp)"
dbLoadRecords("SeqConditionning.template", "EXPERIMENT=PF704-Cpl:Conditionning-01")
```

- Records to configure and monitor the sequence
- · Handle generic defaults:
 - Minor : pause the RF.
 - Major : decreasing the RF
 - Critical: Stop the all sequence

ConditioningSeq: is a support application module that allows to execute a sequence of RF conditioning.

```
epicsEnvSet("power", "PF704-RF:RFS-KAtt-01:kW")
epicsEnvSet("count", "PF704-RF:RFS-Kly-01:IncPwr-Cal:Trig")
epicsEnvSet("width", "PF704-EVR0:Pull-Width-SP")
epicsEnvSet("major", "PF704-Cpl:DefaultMajor")
epicsEnvSet("minor", "PF704-Cpl:DefaultMinor")
epicsEnvSet("critic", "PF704-Cpl:DefaultCritic")
epicsEnvSet("exp","PF704-Cpl:Conditionning-01")
seg ConditionningWF "power=$ (nower)
defaultMajor=$(major), defaul
                                  record(calc, "$(SECTION) -$(SUBSECTION):DefaultMajor") {
                                    field(INPA, "$(SECTION) -$(SUBSECTION): VAC-PwrC-01: PresDefault CPP")
dbLoadRecords ("SegConditionni
                                    field(INPB, "$(SECTION) -$(SUBSECTION): VAC-PwrC-02:PresDefault CPP")
                                    field(INPC, "$(SECTION) -$(SUBSECTION): VAC-PwrC-03:PresDefault CPP")
                                    field(INPD, "$(SECTION) -$(SUBSECTION): VAC-PwrC-04:PresDefault CPP")
                                    field(INPE, "$(SECTION) - $(SUBSECTION): VAC-Ves-01: PresDefault CPP")
    Records to configure a
                                    field(INPF, "$(SECTION) -$(SUBSECTION): VAC-Cav-01: PresDefault CPP")
    Handle generic default
                                    field(INPG, "$ (SECTION) -$ (SUBSECTION): VAC-Cpl-01: Pres. SEVR CPP")
                                    field(INPH, "$(SECTION) - $(SUBSECTION): VAC-Cpl-02: Pres. SEVR CPP")
         Minor: pause the
                                    field(INPI,"$(SECTION)-$(SUBSECTION):VAC-Cpl-03:Pres.SEVR CPP")
         Major : decreasing
                                    field(INPJ, "$(SECTION) -$(SUBSECTION): VAC-Cpl-04: Pres. SEVR CPP")
         Critical: Stop the
                                    field(CALC,"(!(A && B && C && D && E && F)) || ((G + H + I +J)>0?1:0)")
                                    field(PINI, "YES")
```


SaveRestoreApp: is a support application module that allows to save or restore the current state of a list of PVs.

- Based on autosave file format (and code)
 - *.sav file
 - *.req file
- save/restore operations performed by IOC records
- Restore SNL sequence for sub-sequence

```
epicsEnvSet("defect" ,"PF704-Cpl:DefaultCritic")
epicsEnvSet("loadFile","PF704-Cpl:Conditionning-01:PathSav")
epicsEnvSet("start","PF704-Cpl:Conditionning-01:Rdy-Seq")
epicsEnvSet("exp","PF704-Cpl:Conditionning-01")

seq SequenceLoad
"defect=$(defect),loadFile=$(loadFile),isSeqStarted=$(start),Experiment=$(exp)"

dbLoadRecords("SaveRestoreC.template",PREFIX=PF704-Cpl:Conditionning-01)
dbLoadRecords("SeqLoad.template",EXPERIMENT=PF704-Cpl:Conditionning-01)
```

Records to configure and execute the sequence

SaveRestoreApp + ConditioningSeq

SaveRestoreApp + ConditioningSeq

APPLICATIONS

APPLICATIONS

SARAF test stands

APPLICATIONS

SPECIAL CASE

- IFMIF:
 - Coupler 7 can't handle some power area

✓ Monitor the power in the sequence -> can apply some external rules (calcout, aSub, other clients...)

Demo (if gif can be displayed...)

ECCTD ESS

Will be introduced at ICALEPCS

SARAF Rebuncher Test Stand (F. Gohier, Y. Lussignol)

ESS:

- Coupler Cavities Test stand (x2)
- RFQ couplers
- ECCTD: Elliptical Cavities and Cryomodule Test stand Demonstrator
- RFQ Conditioning (sequence used by E. Trachanas)

Saraf:

- C2TS : Coupler cavities Test Stand
- ECTS: Equiped Cavities Test Stand
- RBTS: Rebuncher Test stand
- Cryomodules (future)

IFMIF LIPAC:

- Sathori : Equiped Cavities test stand
- SRF : Cryomodule conditioning on site

Thanks for your attention

