

SARAF Phase II CEA/Irfu-IAEC/SNRC

Architecture and MTCA Technology for the SARAF control system project

Françoise Gougnaud

CS work package leader

CEA, Irfu

Ilanit Hoffman Moran

Head of Phase II CS program

IAEC, SNRC

Epics meeting June 2019

- SARAF program outline
- SARAF Local Control Systems
- Summary

SARAF – Soreq Applied Research Accelerator Facility

- SARAF is constructed at Soreq NRC (SNRC), Israel. The main goals of the program are:
 - To enlarge the experimental nuclear science infrastructure and promote research in Israel
 - To develop and produce radioisotopes for biomedical applications
 - To modernize the source of neutrons at SNRC and extend neutron based research and applications

Soreq NRC

SARAF Phase I

In operation since 2010

SARAF concept and top level requirements

Parameter	Value	Comment
Ion Species	Protons/Deuterons	M/q ≤ 2
Energy Range	5 – 40 MeV	Variable energy
Current Range	0.04 – 5 mA	CW (and pulsed)
Maintenance	Hands-On	Very low beam loss

Planned for 2023
[3] radiation and isotopes

3) applications

2) nuclear reaction

Phase II under construction Planned for 2022
[1] ~30 m long accelerator

In operation since 2010

1) fast particles

Phase-I in routine operation, built to test characterize and prove the novel technologies

Phase-II design N. Pichoff *et al.*, IPAC 2018

The SARAF Linac

SARAF phase I – was built in collaboration with ACCEL, and operational since 2010

SARAF phase II – under construction, in collaboration with CEA And planned to be operational at 2022

The SARAF Linac

Schedule

SARAF phase I – was built in collaboration with ACCEL, and operational since 2010

SARAF phase II – under construction, in collaboration with CEA And planned to be operational at 2022

Recognized by European Physical Society

Hadrons and Nuclei

Recent Review of SARAF

I. Mardor et al., "The Soreq Applied Research Accelerator Facility (SARAF) – Overview, Research Programs and Future Plans", Eur. Phys. Jour. A (2018) 54: 91

LEGACY IN BRIEF

- ➤ CEA Irfu Saclay used EPICS based on VME & VxWorks until 2013
- > Collaboration with ESS ICS started in 2014
 - Cryomodule and RF test stands at Saclay (VME64X/Linux/IOxOS/MRF)
 - ➤ Source& LEBT control system at Catania(VME64X/Linux/IOxOS/MRF)
 - ➤ ESS nBLM test stand at Saclay MTCA/IOxOS

CONTEXT OF THE MIGRATION TO MTCA.4

- ➤ Progress on MTCA.4 with IOxOS boards by ESS ICS
- Choice of the MRF timing system by SNRC
- Advantages of using both MTCA.4 and the MRF timing system
- > Support by ESS/ICS encouraged us to do such a migration
- > SNRC accepted CEA's recommendation to migrate to MTCA.4 for the SARAF control system summer 2018
- ➤ CEA team updated and standardized the IRFU EPICS Environment with MTCA.4 solutions based on IOxOS, MRF boards and ESS ICS EPICS drivers.

STANDARDIZED COTS SOLUTIONS

Requirements of the devices	Sampling/monitoring frequency range	COTS solutions	
Fast acquisition	5 MS/s up to 250 MS/s	MTCA.4 IOxOS AMC IFC-1410 & FMC ADC-3111	
Semi-fast acquisition	50 KS/s up to 5 MS/s	MTCA.4 IOxOS AMC IFC-1410 & FMC ADC-3117	
Remote I/Os control	100 ms up to 1s	Kontron Industrial PC	
LAN or serial		Beckhoff Beckhoff	
Process for vacuum/	100 ms up to 1s	Siemens 1500 PLC & I/O boards/	
cryogenics & Remote I/Os & Interlock		Profinet/Profibus Fieldbuses & remote I/Os	

MRF TIMING SYSTEM TEST STAND (SNRC)

Acts as EVG and fan-out

- Chosen CPU = NAT-MCH-RTM-COMex-E3 with NAT-MCH-PHYS80
- EPICS
- Can send triggers on the backplane
- Can be set to generate events

EPICS STANDARD PLATFORM BASED ON COTS

IRFU EPICS ENVIRONMENT

- ➤ The development and production workflow IEE is used for each Local Control System:
 - > Injector LCS
 - > MEBT LCS
 - Super Conducting Linac LCS
- > Purposes:
 - Configuring in an identical way development and operation by installing the same distribution of Linux packages and the same version of EPICS software
 - > Standardizing EPICS development with software module templates

DEVELOPMENT & PRODUCTION WORKFLOW

*PMx: Physical Machine

SOURCE & LEBT LCS UPGRADE

MEBT COMPONENT REQUIREMENTS

Subsystem	Requirements	Solutions
Vacuum	Vacuum + Water	Siemens PLC
Power Converters	8 quadrupole power converters with	Modbus
	8 steering magnets power converters	Modbus
3 Rebunchers	including 3 LLRF outsourced	MTCA.4 Solution
	motorisation	Siemens PLC
Diagnostics	Faraday Cup	MTCA.4/IOxOS ADC3117
	2 ACCTs	
	Harps profilers	Modbus
	BPMs outsourced	MTCA.4 CFT

MEBT VACUUM & WATER & POWER SUPPLIES LCS

MEBT DIAGNOSTICS LCS

MEBT & ITS DIAGNOSTICS LCS

SUMMARY

- Injector CS is planned to be delivered and integrated in Q1 2020
- ➤ MEBT CS planned to be delivered in Q2 2020
- Preliminary architecture for the SCL is currently starting
- also using MTCA solutions
 - ➤ CM1: 6 LLRFs for cavities
 - ➤ CM2: 7 LLRFs
 - > CM3: 7 LLRFs
 - > CM4: 7 LLRFs
 - > 16 BPMs
 - ≥ 20 nBLMs

> EPICS Community

- Our colleagues:
 - CEA IRFU EPICS team: Jean-François Denis, Francis Gohier, Alexis Gaget, Yves Lussignol, Victor Nadot, Kathy Saintin
 - > CEA IRFU PLC team: Tom Joannem, Nicolas Solenne
 - CEA IRFU Cabinet & Instrumentation team: Ange Lotodé, Patrice Guiho, Victor Silva

And Special thanks to Timo for supporting

