



## Index



### Linear IFMIF Prototype Accelerator (LIPAc) commissioning and LCS integration in CCS

- 1. What and where is LIPAc?
- 2. Control Tasks at LIPAc
- 3. Control Tools Development
- 4. LCS Integration
- 5. Next Steps
- 6. Summary







### What and where is LIPAc?



# What is LIPAc?







# What is LIPAc?





# Japan-Europe scientific collaboration





# Where is LIPAc?



Gym/Pool







International School





# Where is LIPAc?









### **Control Tasks at LIPAc**



### **Control Tasks at LIPAc**



#### **EU Contribution - Local control systems (LCS)**:

- Injector
- RFQ
- **MEBT**
- Diagnostics
- SRF LINAC
- **HEBT**
- Beam Dump
- RF power system
- **Cooling systems**





### LCS at a glance:

- Typically PLC based (a lot of S7-300) but we also have VMEs / VxWorks systems.
- All these interfacing with CCS. industrial Typically have we interfacing with EPICS via Siemens S7 PLC driver.
- Microboxes.
- OPIs.



### JA Contribution - Central control system (CCS):

Machine Protection System

**Personal Protection System** 

Timing System

**Archivers** 





### **Control Tasks at LIPAc**



### LIPAc controls in glance:

- Common System Platform: **EPICS v.3.14.12, CSS4.5.0, CentOS7**
- PV count: ~60 000 PVs alive
- Archiver data/day (@EPICS archiver appliance): ~10GB / day
- IOC count: ~70 IOCs in operation @ ~100 DBs

#### Top repositories centralized – IOCs distributed

- topIFMIF INJ
- topIFMIF\_RFQ
- topIFMIF MEBT
- topIFMIF SRF
- topIFMIF\_SoftIOC
- topIFMIF\_OPI
- ..
- ..



# Services on DMZ for version control:

- SVN in use since 2015
- Gitlab in use since 2019





### **EPICS Control Tools Development**



# **Control Tools Development**



#### **LLRF** automatic rearming tool developed using pyEPICS:

- RFQ cavity needs conditioning -> 8 x 200kW chains.
- LLRF units control the power and react to interlocks.
- The rearming tool allows the RF chains to restart automatically from "safe" interlocks.



High Voltage Power





# **Control Tools Development**



### LLRF rearming tool workflow (main points only):

- 1. In a case of a safe interlock Stop the RF system.
- 2. Save the previous cavity voltage and frequency.
- 3. Reset interlocks.
- 4. Start the master LLRF chain at low cavity voltage value.
- 5. Restore previous frequency mode.
- 6. Start other LLRF chains.

7. Set ramps and ramp to the previous cavity

voltage in two steps





# **Control Tools Development**



Remote participation (EU to JP) and sharing the experimental data. Data-share scheme has been developed:

- Database cloning -> share archived data.
- Data-diode -> share Live PV data.



#### Schedule:

- Internal tests
  started in 2018
  (WebOPI).
- Trials to share with Europe scheduled in June 2019.





### **LCS** Integration



# **LCS** Integration



### **Beam Operation OPI (and integrated OPI):**

- When operating the machine there are certain conditions that have to be checked.
- Beam operation OPI was developed to automatize some of these checks.
- User management with pwd.







# **LCS** Integration



### LIPAc Alarm System (BEAST)

#### 1. Sub-system alarm data:

- Pre-defined (from institutes).
  Alarm template.
- Extracted (from PVs by using a script). Create CSV file.

#### 2. Alarm configuration tool:

- All alarms listed.
- Severity/Levels.
- Logic e.g. OR/AND
- Advice, latch, etc.
- -> Out = xxyyzz.CSV file.

#### 3. Alarm Generator Script:

- Reads the CSV
- Creates Alarm IOC (input from the LCS)
- Creates XML for BEAST.
- 4. Run Alarm IOC and BEAST with the info defined above.

#### LIPAc Alarm Management Chart









### **Next Steps**



# **Next Steps**



### The big picture in terms of controls.

#### **Short haul plan:**

- 1. Establish collaboration with other institutes to share info.
- 2. Integrate LCS of HEBT/BD, SRF LINAc, Cryoplant (Phase B+ and Phase C).

#### Long haul plan:

- 1. Think about the LIPAc future in terms of Phase BA II (= Activity from 2020 2025).
  - Renovation of the control systems of LIPAc.
  - Timing system improvements.
  - Virtualization.



# **Summary**

### LIPAc controls are evolving:

- 1. LCS for many sub-systems successfully integrated -> The machine is being operated in daily-basis.
- 2. Challenges have been faced but they've been sorted out.

### The future looks bright:

- 1. We are currently open to collaboration to share the gained knowledge and operational feedback.
- 2. The refurbishment of the current control system is planned from 2020 onwards.