Transversity PDF of nucleon using pseudo-distribution approach

LaMET '21 @ CNF

Nikhil Karthik William & Mary - Jefferson Lab

On behalf of HadStruc Collaboration

Ref: arXiv:2111.01808

C. Egerer, C. Kallidonis, J. Karpie, NK, C. J. Monahan, W. Morris, K. Orginos, A. Radyushkin, E. Romero, R. S. Sufian, S. Zafeiropoulos

Transversity PDF

$$h_1(x) = f_{\uparrow}(x) - f_{\downarrow}(x)$$

Accessible, for example, from Single transverse spin asymmetry in semi-inclusive DIS

This work: Obtain *x*-dependent transversity PDF using fits to bilocal M.E. (pseudo-distribution) using leading-twist OPE (+ empirically estimated corrections)

Status of experimental determination of transversity PDF

The least pheno-constrained twist-2 quark PDF

Opportunity for lattice!

A good choice of kinematic variables and directions for the matrix element

$$\left\langle N; P_z, S_T \mid \overline{\psi}(z) \gamma_5 \gamma_t \gamma_T W(z, 0) \tau_3 \psi(0) \mid N; P_z, S_T \right\rangle = 2ES_T \mathcal{M}(zP_z, z^2)$$

Renormalize by ratio:

$$\mathfrak{M}(zP_z, z^2) = \frac{\mathcal{M}(z, P_z)}{\mathcal{M}(z, 0)}$$

K. Orginos et al, '17

$$\frac{\langle x^0 \rangle}{g_T}(\mu) = \int_0^1 \frac{h(x,\mu)}{g_T(\mu)} dx = 1$$

(Worry about the overall normalization g_T later)

Framework

Capture the z₃P₃ and z₃² dependence via leading-twist factorization / leading-twist OPE

$$\mathfrak{M}^{\text{twist}-2}(z_3 P_3, z_3^2) = \sum_{n=0}^{\infty} C_n(\mu^2 z_3^2) \frac{(iz_3 P_3)^n}{n!} \frac{\langle x^n \rangle (\mu)}{g_T(\mu)}$$

NLO transversity coefficients for ratio:

$$C_n\left(\mu^2 z_3^2\right) = 1 + \frac{\alpha_s C_F}{\pi} \left\{ \ln\left(\frac{z_3^2 \mu^2 e^{2\gamma_E + 1}}{4}\right) \sum_{k=2}^{n+1} \frac{1}{k} - \left(\sum_{k=1}^n \frac{1}{k}\right)^2 - \sum_{k=1}^n \frac{1}{k^2} \right\}.$$

This work and Braun, Ji, Vladimirov '21

z₃-dependence of 1-loop coeffs at fixed order coupling at $\mu^2=2~{\rm GeV}^2$

Raw lattice data for three-point and two-point functions

Extract the transversity matrix element

- Isotropic clover sea and valence
- 32³ X 64 lattice, 358 cfg X 4src
- $M_\pi=$ 358 MeV
- \circ a= 0.094 fm
- Usage of distillation (rank 64)

(See Colin Egerer's talk)

+

Reconstruct x-dependent PDF, moments (<u>Given:</u> the hypothesis, priors, ...)

Hypothesis:

lattice matrix element can be analyzed within leading-twist NLO framework to a good approximation

Extract the transversity matrix element

Infer corrections to continuum leading-twist NLO just using the lattice data

Reconstruct x-dependence, moments etc (Given the hypothesis)

Hypothesis:

lattice matrix element can be analyzed within leading-twist NLO framework to a good approximation

Extraction of matrix elements

Raw lattice data for three-point and two-point functions

Extract the transversity matrix element

Hypothesis: lattice matrix element can be analyzed within leading-twist NLO framework to a good approximation

Reconstruct x-dependent PDF, moments (<u>Given:</u> the hypothesis, priors, ...)

Fixed-z² analysis as a diagnostic tool

Fit leading-twist OPE to $z_3\ P_3$ dependence at fixed z_3

Extract moments Karpie et al '18

Analyze effectiveness of LT

Let the lattice data be [leading-twist] + [corrections]:

$$\mathfrak{M}(\nu, z_3^2) = \mathfrak{M}^{\text{twist}-2}(\nu, z_3^2) + \sum_{k,n} \left(L_{k,n} \left(\frac{a}{|z_3|} \right)^k + H_{k,n} \left(\Lambda_{\text{QCD}}^2 z_3^2 \right)^k \right) \frac{(i\nu)^n}{n!}$$

Then, an effective z₃ dependent Mellin moment becomes

$$\langle x^{n} \rangle_{\text{eff}}(z_{3}) = \langle x^{n} \rangle + \frac{1}{C_{n}(\mu^{2}z_{3}^{2})} \sum_{k} \left(L_{k,n} \left(\frac{a}{|z_{3}|} \right)^{k} + H_{k,n} \left(\Lambda_{\text{QCD}}^{2} z_{3}^{2} \right)^{k} \right)$$

See a plateau in effective Mellin moment as a function of z₃?

Leading-twist description is good

Infer corrections from deviations to plateau

Deducing the corrections to twist-2 OPE: Imaginary part

Deducing the corrections to twist-2 OPE: Real part

(no visible evidence in data, "precautionary" correction terms)

Raw lattice data for three-point and two-point functions

Extract the transversity matrix element

Infer the corrections to continuum leading-twist NLO just using the lattice data

Reconstruct x-dependent PDF, moments (<u>Given:</u> the hypothesis, priors, ...) Hypothesis:

lattice matrix element can be analyzed within leading-twist NLO framework to a good approximation

Methodology of Fits: towards achieving model independence

$$h_1(x) = x^{\alpha}(1-x)^{\beta} \mathcal{G}(x)$$
 Some regular slowly varying function

A common choice affecting small-x is a parametrization that empirically works:

$$G(x) = 1 + \gamma \sqrt{x} + \delta x + \dots$$

Achieve model independence — expand in complete basis — A good choice is Jacobi Polynomials:

J. Karpie et al, 2105.13313

$$\mathcal{G}(x) = \sum_{n}^{N_{\mathrm{max}}} s_n P_n^{(\alpha,\beta)} (1-2x)$$
 Ortho-normal w.r.t $x^{\alpha} (1-x)^{\beta}$

Choosing the family of functions is crucial for convergence: E.g., VarPro method (Joe's talk)

Methodology of Fits: towards achieving model independence

 $h_1(x) \pm \text{ stat. error } \pm \text{ syst. error}$

Twist-2 OPE (+corrections) fit over a range

 $z \in [2a, 0.56 \text{ fm}] \quad P_z \in [0.41, 2.47] \text{ GeV}$

Systematic Error? vary fit ranges, Jacobi polynomial order, H.T. corrections

• Higher-loop? Add 20% Gaussian noise to α_s as a crude diagnostic

Comparison with JAM PDF determinations

Isospin symmetric intrinsic transversity sea

Summary

Raw lattice data for three-point and two-point functions

Extracted the transversity matrix element: robust with fitting methods

Inferred short-distance <u>lattice corrections</u>. HT effects could not be inferred this way.

Hypothesis which works: lattice matrix element can be analyzed within leading-twist NLO framework to a good approximation

Reconstruct
x-dependent PDF, moments
(Given: the hypothesis, reduced prior on model assumption)

Better agreement with JAM18 (lattice+SIDIS)

Can we learn about process dependence in SSA SIDIS data?