Probing new physics with the leptonic g-2

Paride Paradisi

University of Padova and INFN

TAU2021

The 16th International Workshop on Tau Lepton Physics

30 September 2021

Plan of the talk

() Experimental and theoretical status of the muon $a_{\mu} \equiv \frac{g_{\mu}-2}{2}$

- Hadronic LO contribution from $e^+e^- \rightarrow hadrons$
- Hadronic LO contribution from Lattice QCD (LQCD)

2 New Physics explanations of the (possible) muon g - 2 anomaly

- Electroweak scale NP: the supersymmetric (SUSY) solution
- Heavy NP: Effective Field Theory (EFT) approach
- Light NP: the axion-like particle (ALP) solution
- **(3)** Testing the muon g 2 anomaly at a Muon Collider
- **4** Testing the muon g 2 anomaly with the electron g 2

Outlook

• Muon g – 2: FNAL confirms BNL!

 $\begin{aligned} a_{\mu}^{\text{EXP}} &= (116592089 \pm 63) \times 10^{-11} \begin{bmatrix} 0.54ppm \end{bmatrix} \text{ BNL E821} \\ a_{\mu}^{\text{EXP}} &= (116592040 \pm 54) \times 10^{-11} \begin{bmatrix} 0.46ppm \end{bmatrix} \text{ FNAL E989 Run 1} \\ a_{\mu}^{\text{EXP}} &= (116592061 \pm 41) \times 10^{-11} \begin{bmatrix} 0.35ppm \end{bmatrix} \text{ WA} \end{aligned}$

- FNAL aims at 16 \times 10 $^{-11}$. First 3 runs completed, 4th in progress.
- Muon g 2 proposal at J-PARC: Phase-1 with similar BNL precision.

HLO contribution from $e^+e^- \rightarrow hadrons$

HLO contribution from lattice QCD

• Great progress in lattice QCD results. The BMW collaboration reached 0.8% precision: $a_{\mu,LQCD}^{HLO} = 7075(23)_{stat}(50)_{syst} \times 10^{-11}$ [Borsanyi et al., Nature 2021].

• BMW results weakens the long-standing muon g - 2 discrepancy but it shows a tension with dispersive evaluations of $a_{\mu,e^+e^-}^{\text{HLO}} = 6931(40) \times 10^{-11}$.

Consequences of the BMW result

• Can Δa_{μ} be due to missing contributions in $\sigma(e^+e^- \rightarrow had)$?

An upward shift of
$$\sigma(s)$$
 also induces an increase of $\Delta \alpha_{had}^{(5)}(M_Z)$ defined by:
 $\alpha^{-1}(M_Z) = \alpha^{-1} \left[1 - \Delta \alpha(M_Z) - \Delta \alpha_{had}^{(5)}(M_Z) - \Delta \alpha_{top}(M_Z) \right]$

$$a_{\mu}^{\text{HLO}} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \, K(s) \, \sigma(s) \,, \qquad \Delta \alpha_{\text{had}}^{(5)} = \frac{M_Z^2}{4\pi\alpha^2} \int_{4m_{\pi}^2}^{\infty} ds \, \frac{\sigma(s)}{M_Z^2 - s}$$

$$\text{Im } \mathcal{O} \mathcal{O} = \left| \mathcal{O} \mathcal{O} \right|^2 \sim \sigma(e^+e^- \to \gamma^* \to \text{hadrons})$$

- A change in $\sigma(e^+e^- \rightarrow had)$ is strongly disfavoured by:
 - **EW-fit for** $\sqrt{s} \gtrsim 1$ **GeV** [Marciano, Passera, Sirlin, '08, Keshavarzi, Marciano, Passera, Sirlin, '20, Crivellin, Hoferichter, Manzari, Montull, '20]. A shift of $\sigma(e^+e^- \rightarrow had)$ to accomodate the Δa_{μ} anomaly would necessarely require new physics to show up in the EW-fit!
 - Experimental data on e^+e^- o $\pi^+\pi^-$ for $\sqrt{s}\lesssim$ 1 GeV [Colangelo, Hoferichter, Stoffer, '21]
- A check of the BMW results by other lattice QCD (LQCD) coll. is worth.
- LQCD coll. should provide $\Delta \alpha_{had}^{LQCD}$ to be compared with $\Delta \alpha_{had}^{e^+e^-}$.

New Physics for the muon g - 2: at which scale?

• Δa_{μ} discrepancy at \sim 4.2 σ level:

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 V^2} \approx 2 \times 10^{-9}$

- ▶ NP is at the weak scale ($\Lambda \approx \nu$) and weakly coupled to SM particles.*
- ▶ NP is very heavy ($\Lambda \gg v$) and strongly coupled to SM particles.
- ▶ NP is very light ($\Lambda \lesssim 1$ GeV) and feebly coupled to SM particles.

*Favoured by the *hierarchy problem* and by a WIMP DM candidate but disfavoured by the LEP and LHC bounds (supersymmetry being the most prominent example).

$\Lambda \approx v$: SUSY and the muon (g - 2)

Figure: LHC Run 2 bounds on SUSY scenario for the muon g - 2 anomaly for tan $\beta = 40$. Orange (yellow) regions satisfy the muon g - 2 anomaly at the 1σ (2σ) level [Endo et al., '20].

Paride Paradisi (University of Padova and INFN)

SMEFT Lagrangian relevant for Δa_ℓ

$$\begin{split} \Delta a_{\ell} \simeq \frac{4m_{\ell}^2}{e\Lambda^2} \frac{v}{m_{\ell}} \left(C_{e\gamma}^{\ell} - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ}^{\ell} \log \frac{\Lambda}{m_Z} \right) - \sum_{q=c,t} \frac{4m_{\ell}^2}{\pi^2} \frac{m_q}{m_{\ell}} \frac{C_T^{\ell q}}{\Lambda^2} \log \frac{\Lambda}{m_q} \\ \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{250 \text{ TeV}}{\Lambda}\right)^2 |C_{e\gamma}^{\mu}| & \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{50 \text{ TeV}}{\Lambda}\right)^2 |C_{eZ}^{\mu}| \\ \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{100 \text{ TeV}}{\Lambda}\right)^2 |C_T^{\mu t}| & \frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{10 \text{ TeV}}{\Lambda}\right)^2 |C_T^{\mu c}| \end{split}$$

- ▶ Strongly coupled NP: $C_{\rho\gamma}^{\mu t} \sim g_{\rm NP}^2 / 16\pi^2 \lesssim 1$ implying $\Lambda \lesssim few x 100$ TeV, beyond the direct production reach of any foreseen collider.
- ▶ Weakly coupled NP: $C^{\mu}_{\theta\gamma}$, $C^{\mu t}_{T} \lesssim 1/16\pi^2$ implying $\Lambda \lesssim 20$ TeV maybe within the direct production reach of a very high-energy Muon Collider

SMEFT Lagrangian relevant for Δa_ℓ

Figure: Connection between the Feynman diagrams for leptonic *g*-2 (upper row) and high-energy scattering processes (lower row) within the SMEFT: $H = v + h/\sqrt{2}$

$$\Delta a_{\mu} \sim \frac{m_{\mu}v}{\Lambda^2} C_{eV,T} \quad \iff \quad \sigma_{\mu\mu\to f} \sim \frac{s}{\Lambda^4} |C_{eV,T}|^2 \quad (f = e\gamma, eZ, q\bar{q})$$

• At high energy $\sigma_{\mu\mu\to f}$ can compete with Δa_{μ} to test the very same NP!

Paride Paradisi (University of Padova and INFN)

The muon g-2 at a Muon Collider [Buttazzo and P.P., '20]

Figure: 95% C.L. reach on Δa_{μ} , as well as on the muon EDM d_{μ} , as a function of \sqrt{s} from various processes for the reference integrated luminosity $\mathcal{L} = (\sqrt{s}/10 \text{ TeV})^2 \times 10 \text{ ab}^{-1}$.

$$d_{\mu}=rac{\Delta a_{\mu} an \phi_{\mu}}{2m_{\mu}} \,\, e\simeq 3 imes 10^{-22} \left(rac{\Delta a_{\mu}}{3 imes 10^{-9}}
ight) an \phi_{\mu} \,\, e\, {
m cm}$$

Paride Paradisi (University of Padova and INFN)

$\Lambda \lesssim$ 1 GeV: Axion-like Particles and the muon (g-2)

Axion-like Particle effective Lagrangian

$$\mathcal{L} = e^2 C_{\gamma\gamma} \frac{a}{\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{c_{\mu\mu}}{2} \frac{\partial^{\nu} a}{\Lambda} \bar{\mu} \gamma_{\nu} \gamma_5 \mu$$

Figure: Contributions of a scalar 's' and a pseudoscalar 'a' ALP to the $(g-2)_{\ell}$.

[Marciano, Masiero, P.P., Passera '16] [Bauer, Neubert, Renner, Schnubel, Thamm, '19] [Cornella, P.P., Sumensari '19]

Figure: Δa_{μ} regions favoured at 68% (red), 95% (orange) and 99% (yellow) CL. Gray regions are excluded by the BaBar search $e^+e^- \rightarrow \mu^+\mu^- + \mu^+\mu^-$ [Bauer, Neubert, Thamm, '17]

$$\Delta a_{\mu} = \frac{m_{\mu}^2}{\Lambda^2} \left[\frac{12\alpha^3}{\pi} C_{\gamma\gamma}^2 \ln^2 \frac{\Lambda^2}{m_{\mu}^2} - \frac{(c_{\mu\mu})^2}{16\pi^2} h_1 \left(\frac{m_a^2}{m_{\mu}^2} \right) - \frac{2\alpha}{\pi} c_{\mu\mu} C_{\gamma\gamma} \ln \frac{\Lambda^2}{m_{\mu}^2} \right]$$

Paride Paradisi (University of Padova and INFN)

• NP effects are encoded in the effective Lagrangian

$$\mathcal{L} = \boldsymbol{e} \frac{\boldsymbol{m}_{\ell}}{2} \left(\bar{\ell}_{\boldsymbol{R}} \sigma_{\mu\nu} \boldsymbol{A}_{\ell\ell'} \ell'_{\boldsymbol{L}} + \bar{\ell}'_{\boldsymbol{L}} \sigma_{\mu\nu} \boldsymbol{A}^{\star}_{\ell\ell'} \ell_{\boldsymbol{R}} \right) \boldsymbol{F}^{\mu\nu} \qquad \ell, \ell' = \boldsymbol{e}, \mu, \tau \,,$$

Branching ratios of $\ell \rightarrow \ell' \gamma$

$$\frac{\mathrm{BR}(\ell \to \ell' \gamma)}{\mathrm{BR}(\ell \to \ell' \nu_{\ell} \bar{\nu}_{\ell'})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_{\ell\ell'}|^2 + |A_{\ell'\ell}|^2 \right).$$

Δa_ℓ and leptonic EDMs

$$\Delta a_{\ell} = 2m_{\ell}^2 \operatorname{Re}(A_{\ell\ell}), \qquad \qquad \frac{d_{\ell}}{e} = m_{\ell} \operatorname{Im}(A_{\ell\ell}).$$

• "Naive scaling": a broad class of NP theories contributes to Δa_{ℓ} and d_{ℓ} as

$$\frac{\Delta a_{\ell}}{\Delta a_{\ell'}} = \frac{m_{\ell}^2}{m_{\ell'}^2}, \qquad \qquad \frac{d_{\ell}}{d_{\ell'}} = \frac{m_{\ell}}{m_{\ell'}}$$

Model-independent predictions

•
$${
m BR}(\ell_i o \ell_j \gamma)$$
 vs. $(g-2)_\mu$

$$\begin{aligned} \mathrm{BR}(\mu \to \boldsymbol{e}\gamma) &\approx 3 \times 10^{-13} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{e\mu}}{10^{-5}}\right)^2 \\ \mathrm{BR}(\tau \to \mu\gamma) &\approx 4 \times 10^{-8} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{\mu\tau}}{10^{-2}}\right)^2 \end{aligned}$$

• EDMs vs.
$$(g-2)_{\mu}$$

$$\begin{array}{ll} d_e &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 10^{-28} \left(\frac{\phi_e^{CPV}}{10^{-4}}\right) \ e \ \mathrm{cm} \, , \\ \\ d_\mu &\simeq& \left(\frac{\Delta a_\mu}{3\times 10^{-9}}\right) 2\times 10^{-22} \ \phi_\mu^{CPV} \ e \ \mathrm{cm} \, . \end{array}$$

• Main messages:

- $\Delta a_{\mu} pprox (3 \pm 1) imes 10^{-9}$ requires a nearly flavor and CP conserving NP
- **Large effects in the muon EDM** $d_{\mu} \sim 10^{-22} \ e \ {
 m cm}$ are still allowed!

[Giudice, P.P., & Passera, '12]

Longstanding muon g – 2 anomaly

$$\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} \equiv a_{\mu}^{\text{NP}} = (2.51 \pm 0.59) \times 10^{-9}$$

 $\Delta a_{\mu} \equiv a_{\mu}^{\text{NP}} \approx (a_{\mu}^{\text{SM}})_{weak} \approx rac{m_{\mu}^2}{16\pi^2 v^2} \approx 2 \times 10^{-9}$

Testing the muon g - 2 anomaly through the electron g - 2

$$\frac{\Delta a_e}{\Delta a_\mu} = \frac{m_e^2}{m_\mu^2} \qquad \Longleftrightarrow \qquad \Delta a_e = \left(\frac{\Delta a_\mu}{3 \times 10^{-9}}\right) 0.7 \times 10^{-13}$$

► a_{θ} has never played a role in testing NP effects. From $a_{\theta}^{\text{SM}}(\alpha) = a_{\theta}^{\text{EXP}}$, we extract α which was is the most precise value of α up to 2018!

- The situation has now changed thanks to th. and exp. progresses.
- \triangleright α can be extracted from atomic physics and a_e used to perform NP tests!

[Giudice, P.P, & Passera, '12]

• Status of Δa_e as of 2012

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}} = -9.2 \, (8.1) \times 10^{-13},$$

$$\delta a_e \times 10^{13}: \quad (0.6)_{\text{QED4}}, \quad (0.4)_{\text{QED5}}, \quad (0.2)_{\text{HAD}}, \quad (7.6)_{\delta\alpha}, \quad (2.8)_{\delta a} = 2.5 \, \text{Cm}^{-13},$$

- > The errors from QED4 and QED5 will be reduced soon to 0.1×10^{-13} [Kinoshita]
- We expect a reduction of δa_e^{EXP} to a part in 10⁻¹³ (or better). [Gabrielse]
- Work is also in progress for a significant reduction of $\delta \alpha$. [Nez]
- Status of Δa_e as of 2018: 2.4σ discrepancy [Parker et al., Science, '18]

$$\Delta a_e = a_e^{\text{EXP}} - a_e^{\text{SM}}(\alpha_{\text{Berkeley}}) = -8.8 (3.6) \times 10^{-13}$$

$$\delta a_e \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (2.3)_{\delta \alpha}, \quad (2.8)_{\delta a_e^{\text{EXP}}}.$$

Status of Δa_e as of 2020: 1.6σ discrepancy [Morel et al., Nature, '20]

$$\Delta a_{e} = a_{e}^{\text{EXP}} - a_{e}^{\text{SM}}(\alpha_{\text{LKB2020}}) = 4.8 (3.0) \times 10^{-13}$$

$$\delta a_{e} \times 10^{13} : \quad (0.1)_{\text{QED5}}, \quad (0.1)_{\text{HAD}}, \quad (0.9)_{\delta\alpha}, \quad (2.8)_{\delta a_{e}^{\text{EXP}}}.$$

• $\Delta a_e \lesssim 10^{-13}$ is not too far! This will bring a_e to play a pivotal role in probing new physics in the leptonic sector. [Giudice, P.P. & Passera, '12]

Paride Paradisi (University of Padova and INFN)

Outlook

- The muon g 2 represents the most longstanding hint of New Physics now, thanks to the E989 experiment at FNAL, growing to 4.2σ .
- LQCD results by the BMWc weaken the muon g 2 discrepancy to 1.6 σ but they are in tension with the EW-fit and $e^+e^- \rightarrow hadrons$ experimental data:
 - The MUonE experiment can provide an independent measure of $\Delta \alpha_{had}$.
- Both heavy New Physics ($\Lambda \gg 1 \text{ TeV}$) and ligh New Physics ($\Lambda \leq few \times \text{GeV}$) scenarios have the potential to account for the muon q-2 anomaly.
- A Muon Collider running at $\sqrt{s} \gg 1$ TeV would provide a unique opportunity to probe heavy New Physics effects in the muon g-2 in a model-independent way:
 - Direct determination of NP, not hampered by the hadronic uncertainties of a_{μ}^{SM} .
 - A high-energy measurement with $\mathcal{O}(1)$ precision is sufficient to probe $\Delta a_{\mu} \sim 10^{-9}$.
- Testing New Physics effects in the electron q 2 at the 10^{-13} is not too far! This will bring *a_e* to play a pivotal role in probing New Physics in the leptonic sector.
- The NP accounting for the muon q 2 anomaly can lead to potentially relevant enhancements in leptonic EDMs and LFV physics.

Message: an exciting Physics program is in progress at the Intensity Frontier!

Paride Paradisi (University of Padova and INFN)

Backup slides

Connecting $(g-2)_{\mu}$ with high-energy processes (Butlazzo and PP, '20)

• Connecting
$$\mu^+\mu^- o h\gamma$$
 with Δa_μ

$$\sigma_{\mu\mu\to h\gamma} = \frac{s}{48\pi} \frac{|C^{\mu}_{e\gamma}|^2}{\Lambda^4} \approx 0.7 \text{ ab } \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2$$

• SM irreducible background:

 $\blacktriangleright \ \sigma^{\rm SM}_{\mu\mu\to h\gamma} \approx (\alpha y_{\mu}^2/4s) \times \ln(s/m_{\mu}^2)|_{\sqrt{s}=30\,{\rm TeV}} \sim 4\times 10^{-3}\,{\rm ab}: \text{negligible!}$

• SM reducible background:

$$\frac{d\sigma_{\mu\mu\to Z\gamma}}{d\cos\theta}\sim \frac{\pi\alpha^2}{4s}\frac{1+\cos^2\theta}{\sin^2\theta} \qquad \qquad \frac{d\sigma_{\mu\mu\to\hbar\gamma}}{d\cos\theta}=\frac{|C_{\theta\gamma}^{\mu}|^2}{\Lambda^4}\frac{s}{64\pi}(1-\cos^2\theta)$$

• The significance of the signal $S = N_S / \sqrt{N_B + N_S}$ maximal for $|\cos \theta| \lesssim 0.6$.

$$\sigma^{\mathrm{cut}}_{\mu\mu\to h\gamma} \approx 0.53 \operatorname{ab} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}} \right)^2, \qquad \sigma^{\mathrm{cut}}_{\mu\mu\to Z\gamma} \approx 82 \operatorname{ab} \qquad (\sqrt{s} = 30 \operatorname{TeV})$$

S/B isolation: i) angular distributions and ii) h/Z invariant mass reconstruction.

- Cut-and-count exp. with $b\bar{b}$ final state, $\mathcal{B}(h/Z \rightarrow b\bar{b}) = 0.58/0.15$ and $\epsilon_b = 80\%$.
- For a Z/h misident. prob. of 10%, $N_{S(B)} = 22(88)$ and S = 2 at $\sqrt{s} = 30$ TeV.

Connecting $(g-2)_{\mu}$ with high-energy processes (Bultazzo and P.P., '20)

• Connecting
$$\mu^+\mu^-
ightarrow$$
 ($h\gamma, Zh, t\bar{t}, c\bar{c}$) with Δa_μ

$$\begin{split} \sigma^{\mathrm{cut}}_{\mu\mu\to h\gamma} &\approx 0.5 \,\mathrm{ab} \left(\frac{\sqrt{s}}{30 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to Zh} &\approx 38 \,\mathrm{ab} \, \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to t\bar{t}} &\approx 58 \,\mathrm{ab} \, \left(\frac{\sqrt{s}}{10 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \\ \sigma_{\mu\mu\to c\bar{c}} &\approx 100 \,\mathrm{fb} \, \left(\frac{\sqrt{s}}{3 \,\mathrm{TeV}}\right)^2 \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \end{split}$$

Δa_µ predictions in the SMEFT

 $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{250 \text{ TeV}}{\Lambda}\right)^2 |C_{\theta\gamma}^{\mu}|$ $\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{100 \text{ TeV}}{\Lambda}\right)^2 |C_{T}^{\mu t}|$

SM irreducible background

$$\begin{split} &\sigma^{\rm SM,cut}_{\mu\mu\to Z\gamma}\approx 82\,{\rm ab}\left(\frac{\rm 30~TeV}{\sqrt{s}}\right)^2\\ &\sigma^{\rm SM}_{\mu\mu\to t\bar{t}}\approx 1.7\,{\rm fb}\left(\frac{\rm 10~TeV}{\sqrt{s}}\right)^2 \end{split}$$

$$\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{50 \text{ TeV}}{\Lambda}\right)^2 |\mathcal{C}_{eZ}^{\mu}|$$
$$\frac{|\Delta a_{\mu}|}{3 \times 10^{-9}} \approx \left(\frac{10 \text{ TeV}}{\Lambda}\right)^2 |\mathcal{C}_{T}^{\mu c}|$$

$$\sigma_{\mu\mu\to Zh}^{\rm SM} \approx 122 \, {\rm ab} \left(\frac{10 \, {\rm TeV}}{\sqrt{s}}\right)^2$$

$$\sigma_{\mu\mu\to c\bar{c}}^{\rm SM} \approx 19 \, {\rm fb} \left(\frac{3 \, {\rm TeV}}{\sqrt{s}}\right)^2$$

Paride Paradisi (University of Padova and INFN)