The 16th International Workshop on Tau Lepton Physics (TAU2021) (Virtual Edition)

September 27, 2021 to October 1, 2021 Indiana University

Search for Lepton Flavor Violation in $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$ at BABAR

Nafisa Tasneem

ntasneem@uvic.ca, ntasneem@stfx.ca
On behalf of the BaBar Collaboration
Sept 27- Oct 01, 2021.

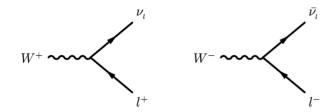
A Snapshot from the Particle Data Group (PDG) Upsilon Decays

LEPTON FAMILY NUMBER (LF) VIOLATING MODES ———

$$\Gamma(e^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$$
 $VALUE \text{ (units }10^{-6})$
 $CL\%$
 $DOCUMENT ID$
 $TECN$
 $COMMENT$
 $E^{\pm}\tau^{\mp}$
 $CL\%$
 $E^{\pm}\tau^{\mp}$
 E^{\pm

Branching Fraction

$$\Gamma(e^{\pm}\mu^{\pm})/\Gamma_{ ext{total}}$$

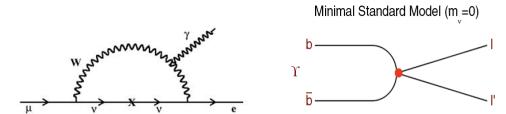

A journal paper has submitted in the PRL arXiv link: http://arxiv.org/abs/2109.03364

Outline of the Talk

- Motivation: Charged Lepton Flavour Violation
- Theoretical Expectations and Experimental Limit
- Data and MC Samples
- Analysis Strategy
- Results
- Conclusion

Charged Lepton Flavour Violation

- Charged Lepton Flavour Violation is a transition among e, μ, τ that doesn't conserve lepton family number.
- In Standard Model, Lepton Flavour is conserved for zero degenerate ν masses and now we have clear indication that ν's have finite mass.
- Example of **lepton flavour conservation** is a muon decay: $\mu^- \rightarrow e^- \overline{\nu_e} \nu_\mu$



 In the charged lepton sector, Lepton Flavor Violation is heavy suppressed in the Standard Model

$$l_{\alpha} \rightarrow l_{\beta} \approx \mathcal{O}(10^{-54})$$

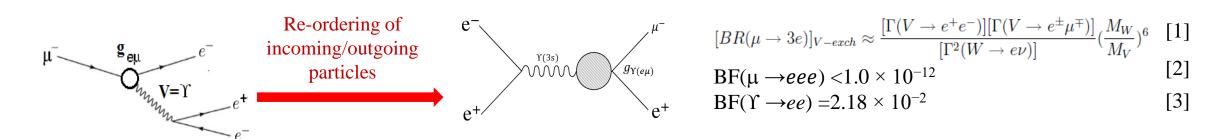
- Various BSM models such as Supersymmetry, Compositeness, Heavy Neutrino, Leptoquarks, Heavy Z', Anomalous boson Coupling, Higgs/top loops etc. predict CLFV.
- A clear experimental signature = "New Physics"

• Example of charged lepton flavour violation is a neutrinoless muon decay: $\mu^- \rightarrow e^- \gamma$

Opportunity to search for the New Physics!!!

$$\Gamma(\mu \to e \gamma) \approx \frac{G_F^2 m_\mu^5}{192 \pi^3} \qquad \left(\frac{\alpha}{2\pi}\right) \qquad sin^2 2\theta sin^2 \left(\frac{1.27 \Delta m^2}{M_W^2}\right)$$

$$\mu - decay \qquad \gamma - vertex \qquad \vartheta - oscillation$$

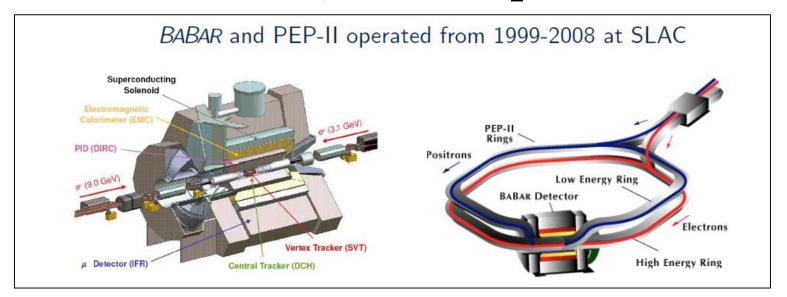

$$\approx \frac{G_F^2 m_\mu^5}{192 \pi^3} \qquad \left(\frac{3\alpha}{32\pi}\right) \qquad \left(\frac{\Delta m_{23}^2 s_{13} c_{13} s_{23}}{M_W^2}\right)^2$$
with $\Delta \sim 10^{-3} eV^2$, $M_W \sim O(10^{11}) eV \approx O(10^{-54})$

Experimentally not measurable!!

Theoretical Expectations and Experimental Limit

S. Nussinov, et. al. estimated that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M_{\mu}^2/(2~M_{\Upsilon}^2)$ leading to a recalculated indirect bound:

BF(
$$\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$$
) < 1× 10⁻³

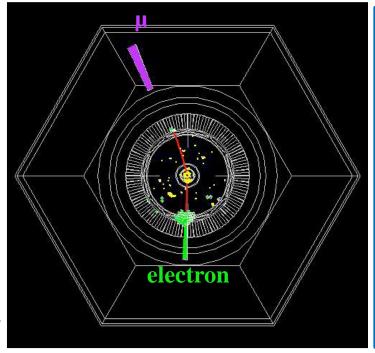


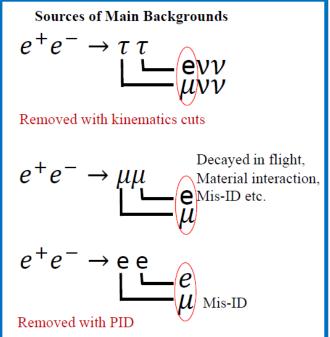
Existing Measurements	Results	CL (%)	Collaboration	
$BF(\Upsilon(3S) \to e^{\pm}\tau^{\mp})$	$< 4.2 \times 10^{-6}$	90	J.P. Lees et al. PR D89 111102 [BaBar Collaboration]	
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 3.1 × 10 ⁻⁶	90		
$BF(\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})$	< 20.3 × 10 ⁻⁶	95	Love et al. PRL 101, 201601 [CLEO Collaboration]	

- [1] S.Nussinov, et. al. PRD 63 (2001)[2] Bellgardt, et al., Nucl.Phys. B299 (1988)
- [3] P.A. Zyla et al. (Particle Data Group)

- We report a limit several orders of magnitude more sensitive than this indirect limit.
- No published experimental measurement of the decay on $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$ yet!

Data, MC Sample

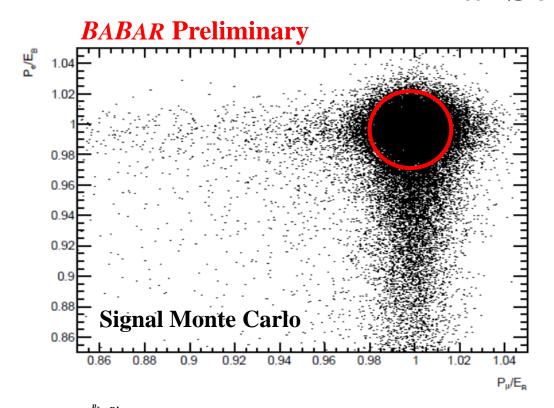


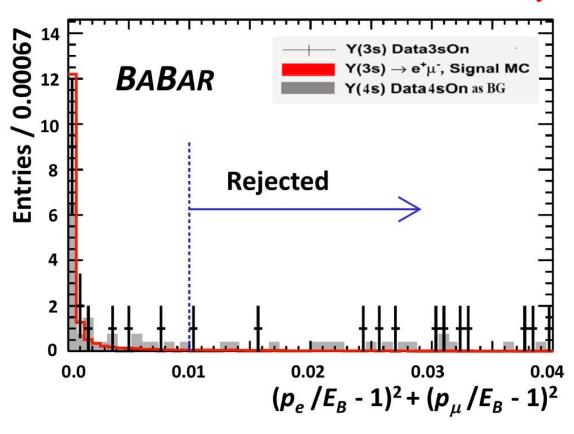

Data Sample	On resonance (fb ⁻¹)	Off resonance (fb ⁻¹)
Run 7 Y (3S)	27.9 = 27.0 + 0.93	2.62
(Data)		To validate the systematic study
Run 6 Y(4S)	78.31	7.75
Data driven continuum	Systematic study	To validate the systematic study
background	pre-selected as $e^{\pm}\mu^{\mp}$ and $\mu^{\pm}\mu^{\mp}$	

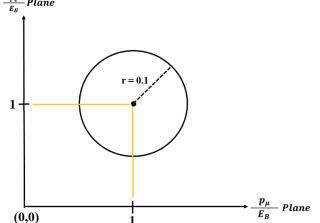
MC signal: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: 103000 events

Signal and Background Characteristics

- $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$: Required two primary track signal of e^{\pm} and μ^{\mp}
- CM Momentum: $p_{e^{\pm}} \sim \frac{\sqrt{s}}{2} \sim E_B$ and $p_{\mu^{\pm}} \sim \frac{\sqrt{s}}{2} \sim E_B$ where E_B =Beam Energy in Centre of Mass System
- Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to emerged as back to back.
- Energy deposit by μ^{\mp} track on the Electromagnetic Calorimeter > 50 MeV
- EMC acceptance $24^{\circ} < \theta_{Lab} < 130^{\circ}$ etc.



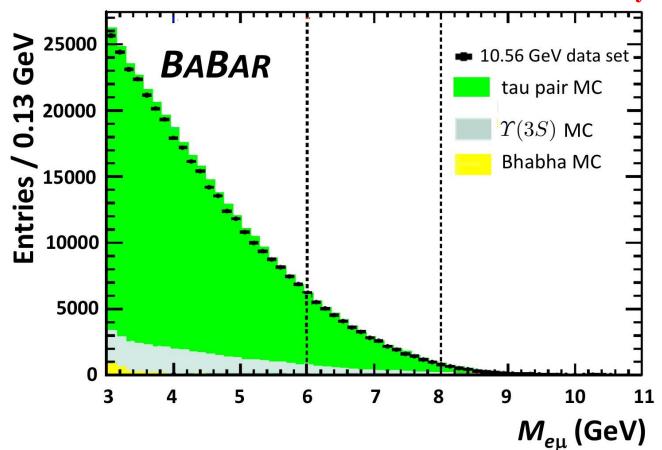

Sample Background event $e^-e^+ o au^\pm au^\mp o e^\pm \mu^\mp + 4
u$


Different Sources of Background

Final Selection Criterion

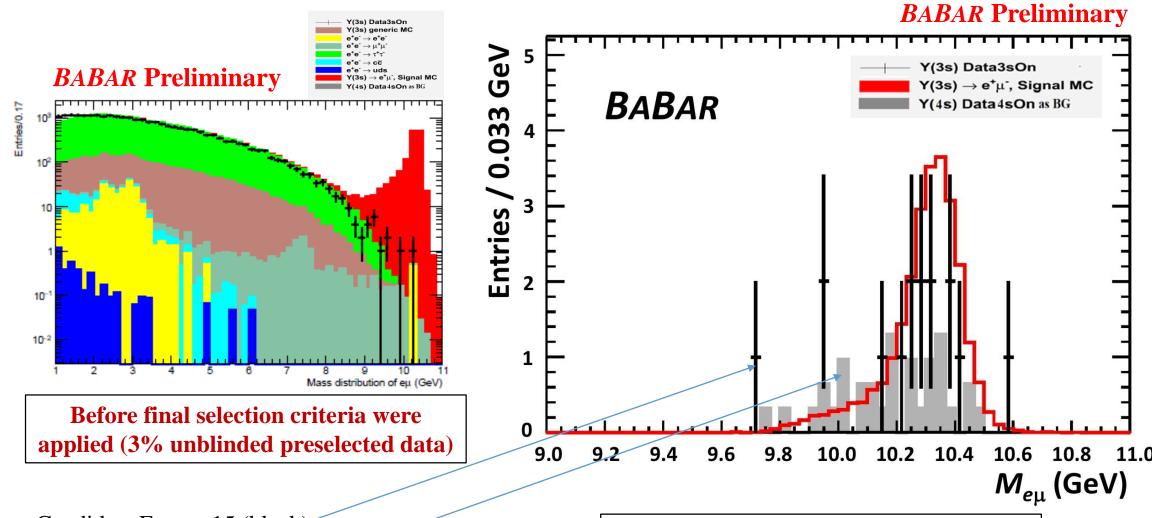
BABAR Preliminary

Selection Criteria: The lepton momenta must satisfy the condition which is defining a circle of radius $\left(\frac{p_e}{E_B}-1\right)^2+\left(\frac{p_\mu}{E_B}-1\right)^2=(\mathbf{0}.\mathbf{1})^2=\mathbf{0}.\mathbf{0}\mathbf{1}$ Where, $p_{e^\pm,\,\mu^\pm}\sim\frac{\sqrt{s}}{2}\sim E_B$


Impact of each component of the selection on the signal efficiency, background and data.

- The first row provides information on the pre-selection.
- The last row provides information after applying all selection criteria.
- Rows 2-7 provides information when all requirements are applied except the criterion associated with the particular row. The luminosity-normalized expected number of events in the third and forth columns are for the background events from the $e^+e^- \rightarrow \Upsilon(3S)$ EvtGen MC and the data-driven continuum background events estimated from the $e^+e^- \rightarrow \Upsilon(4S)$ sample, respectively.
- The last column represented the number of events in the 27.02 fb⁻¹ data sample after unblinding.

Selection	Efficiency	$\Upsilon(3S)$	Continuum	Events
Criterion	$arepsilon_{e\mu}$	$\overrightarrow{\mathbf{B}}\mathbf{G}'$	BG	in Data
Pre-Selec.	0.8020	75516	725003	945480
	± 0.0012	± 180	± 500	
Optimized	0.5074	5178	320911	358322
PID	± 0.0015	± 49	± 333	
2 tracks	0.2354	0	14.1	18
in final	± 0.0013		± 2.2	
state				
Lep. Mom.	0.2684	86.5	253.3	302
	± 0.0012	± 6.3	± 9.4	
Back-to-	0.2402	0.46	36.2	39
back	± 0.0013	± 0.46	± 6.0	
EMC	0.2495	0	13.5	17
Accept.	± 0.0013		$\pm \ 2.2$	
Energy on	0.2452	0	16.9	19
EMC	± 0.0013		± 2.4	
All Criteria	0.2342	0	12.2	15
	± 0.0013		± 2.1	


Systematic Uncertainty on Signal Efficiency

- Controlled Sample: A data set where two major cuts were reversed to check the data/MC agreement.
- Disagreement arises due to uncertainties in PID, Tracking, kinematics, trigger etc.
- Uncertainty in "Side Bands": 1.2%

Invariant Mass distribution of $e^{\pm}\mu^{\mp}$

After all selection criteria are applied

Candidate Events:15 (black)

Data Driven Estimated

Background: 12.2 (grey)

Summary: Background, Uncertainty, Candidate

Source of Background	Data Driven Continuum Background Y(4S)	Peaking Background from Generic Y(3S) MC
Tight PID selection	12.2 ± 2.1	0
Loose PID selection	N/A	1.80 ± 0.9

Values	Uncertainties BABAR Preliminary
ε_{SIG} (systematics)	
• In the "Lepton Momentum" cut	0.029 (2.9%)
• In the "Back to back" cut	0.011 (1.1%)
• In all other cuts on the "Side bands"	0.012 (1.2%)
$\varepsilon_{\mathrm{SIG}}$ (total)	$0.2342 \pm (0.0077_{SYST} \pm 0.0013_{STAT})$ $0.2342 \pm 0.0078_{TOTAL}$ (3.3%)
N_{Υ} (27.0 fb ⁻¹)	$(117.7 \pm 1.18) \times 10^6 (1.02\%)$ [Phys. Rev. Lett. 104, 151802.(2010).]
Total Background (equivalent to 27.0 fb ⁻¹)	$12.2 \pm 2.3 $ (18.9%)
Candidate Seen in Data Sample	15

Results on Lepton Flavour Violating Decays

BABAR Preliminary

• Data:

$$(27.0 \, fb^{-1})$$

• Branching Fraction:

$$\frac{N_{\rm Candidate} - N_{BG}}{\varepsilon_{sig} \times N_{\Upsilon}}$$

$$(1.0 \pm 1.4_{stat(N_{Candidate})} \pm 0.8_{syst}) \times 10^{-7}$$

• Upper Limits with Confidence Level of 90%:

$$< 3.6 \times 10^{-7}$$
 CLs Method

[J.Phys.G 28 (2002) 2693-2704]

Implication For New Physics

• A measurement of BF($\Upsilon(3S) \to e^{\pm} \mu^{\mp}$) can be used to place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavour violation.

where,
$$\frac{g^2_{NP}}{\Lambda_{NP}} = \frac{\text{effective coupling of the new physics}}{\text{energy scale of the NP, given by the mass of the NP propagator.}}$$

• Place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavor violation using

BF(
$$\Upsilon(3S) \to e^{\pm} \mu^{\mp}$$
) < 3.6 × 10⁻⁷ @ 90%CL BABAR Preliminary

$$\left(\frac{g_{NP}^2}{\Lambda_{NP}}\right)^2 / \left(\frac{4\pi\alpha_{QED}Q_b}{M_{\Upsilon(3S)}}\right)^2 = \frac{BF(\Upsilon(3S)\to e\mu)}{BF(\Upsilon(3S)\to \mu\mu)}$$

$$\Lambda_{NP}/g_{NP}^2 \ge 80 \text{ TeV } @90\% \text{ CL}$$

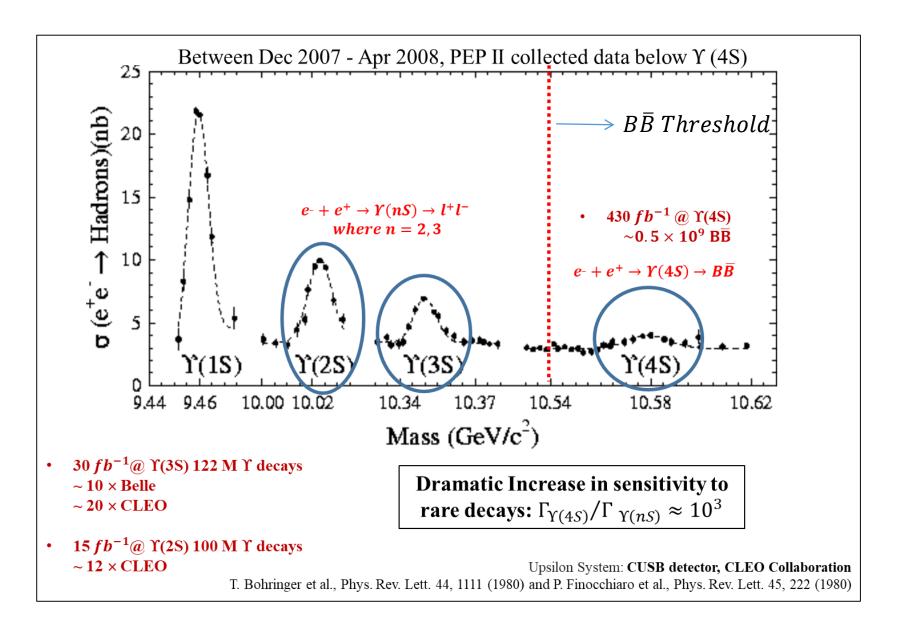
Conclusion

• This is the first reported experimental upper limits on $\Upsilon(3S) o e^\pm \mu^\mp$

$$\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp} < 3.6 \times 10^{-7} @ 90\% \text{ C.L.}$$

BABAR Preliminary

• Our reported limit is several orders of magnitude tighter than the indirected limit according to the ref [S.Nussinov, et. al. PRD 63, 016003 (2001)].


$$\Lambda_{NP}/g_{NP}^2 \ge$$
 80 TeV

BABAR Preliminary

- This result can be interpreted as a limit on NP:
- A PRL journal paper has already submitted for the publication.

Thanks and Questions

Back up: Charged Lepton Flavour Violation in Upsilon Decays

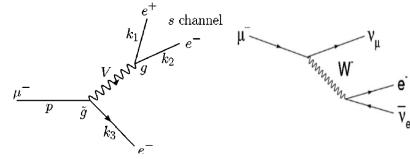
Back up: Theoretical Upper limit (Indirect)

Nussinov, Peccei, Zhang [1]

- Assume coupling of Υ to e μ looks like: $L_{eff} = gV_{e\mu}\bar{\mu}\gamma_{\alpha}eV^{\alpha}$
- Through Fig 1. this coupling contributes to $A(\mu \rightarrow 3e)$

$$A(\mu \to 3e) = (\bar{u}_{\mu}(p)\gamma^{\alpha}u_{e}(k_{3}))(\bar{v}_{e}(k_{1})\gamma_{\alpha}u_{e}(k_{2}))\frac{g_{V_{e\mu}}g_{V_{ee}}}{M_{V}^{2} - S} \quad ----(1)$$

$$\frac{[\Gamma(\mu \to 3e)]_{V-exch}}{[\Gamma(\mu \to e\nu\bar{\nu})]} \approx \frac{g^2 V_{e\mu} g^2 V_{ee}}{M_V^4} / \frac{g_W^4}{M_W^4} \qquad ----(2)$$


Since $[\Gamma(V \to e^+e^-)] \sim g^2 V_{ee} M_V$ and

$$[\Gamma(\mathrm{V} \to \mathrm{e}^{\pm}\mu^{\mp})] \sim \mathrm{g}^2 \mathrm{V}_{e\mu} \mathrm{M}_V$$
, while $[\Gamma(\mathrm{W} \to \mathrm{e}\nu)] \sim \mathrm{g}_W^2 \mathrm{M}_W$

$$[BR(\mu \to 3e)]_{V-exch} \approx \frac{[\Gamma(V \to e^+e^-)][\Gamma(V \to e^{\pm}\mu^{\mp})]}{[\Gamma^2(W \to e\nu)]} (\frac{M_W}{M_V})^6$$
 ----(3)

$$BR(\Upsilon \to e\mu) = BR(\mu \to eee) \frac{\Gamma(W \to e\nu)^2}{\Gamma(\Upsilon)\Gamma \to ee} (\frac{M_{\Upsilon}}{M_W})^6$$
 ----(4)

$$BR(\Upsilon(3S) \to e^{\pm}\mu^{\mp} \le 2.5 \times 10^{-8}.$$

(Left) A vector exchange diagram contributing to $\mu \to 3e$ (Right) Ordinary muon decay, $\mu \to \text{ev}\bar{\nu}$, which proceeds via W exchange.

- BF($\mu \to \text{eee}$) $\leq 1.0 \times 10^{-12}$
- BF($\mu \to e \nu \bar{\nu}$) $\simeq 100 \%$
- $\bullet~BF(W\rightarrow e^+\nu)\simeq (10.71\,\pm\,0.09)~\%$
- BF($\Upsilon(3S) \to l^+l^-$) $\simeq (2.18 \pm 0.21) \%$
- $\Gamma(\Upsilon(3S) = (20.32 \pm 1.85) \ keV$
- $\Gamma(W) = (2.046 \pm 0.049) \ GeV$

S.Nussinov, et. al. estimate that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M_{\mu}^{2}/(2 M_{\Upsilon}^{2})$ leading to a re-calculated indirect bound: BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 1× 10⁻³

[1] Nussinov, et. al. PRD 63, 016003 (2001)

Back up: Analysis Scheme

- Blind Analysis: To eliminate experimenter's bias.
- **Pre-Selection:** Needs a special background filter to collect $e^{\pm}\mu^{\mp}$ events efficiently.
- Final Selection by the analyst: Applied on the pre-selected events
- PID Selection: Multivariate Technique applied, tested 16 different PID selectors.
- Optimized Electron and Muon selectors: $\epsilon_{e\mu}/\sqrt{(1+N_{BG})}$ where

 $\varepsilon_{e\mu}$ is the final efficiency as determined by signal MC and

 N_{BG} is the number of expected background events

Final Selection:

2 tracks (1 electron and 1 muon in the final state), one in each hemisphere;

 $24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.

The lepton momenta must satisfy the following condition

$$\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01 \text{ where } E_{Beam} = \sqrt{s}/2$$

Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they emerged as back to back.

Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.