The 16th International Workshop on Tau Lepton Physics (TAU2021)

Searching For Lepton Flavor Violating Interactions At Future Electron-positron Colliders

arXiv:2107.00545

Presented by: Reza Jafari*

In Collaboration with:
S. M. Etesami, M. Mohammadi Najafabadi , S. Tizchang

School of Particles and Accelerators, IPM

Elementary Particles
LEPTONS

tau

Mass=1.7768 GeV/c²
Charge=-1
Spin= ½

1 Oct. 2021

* <u>jafari@ipm.ir</u>

MOTIVATION & INTRODUCTION

- In the SM neutrinos are massless \rightarrow LFV interactions are forbidden.
- Neutrino oscillations have been observed Neutrinos are massive.
- This leads to LFV. But ...

[arXiv:1912.09862]

■ An increase of several orders of magnitude is predicted in some SM extensions. [arXiv:0406039]

Any detection of LFV signal → Clear evidence for BSM

- So far, no cLFV has been observed and there are several strong constraints from various experiments.
- The Belle II prospect at 90% CL with 50 ab^{-1} :

$$\mathcal{B}(\tau^- \to e^- e^+ e^-) \le 2.9 \times 10^{-8} \text{ (BaBar)}$$

$$\mathcal{B}(\tau^- \to e^- e^+ e^-) \le 2.7 \times 10^{-8} \text{ (Belle)}$$

$$\mathcal{B}(\tau^- \to e^- e^+ e^-) \lesssim 10^{-10}$$

THEORETICAL FRAMEWORK

If the new degrees of freedom contributing to LFV are heavy enough, the LFV couplings could be reasonably parameterized via the effective contact interactions.

■ The effective Lagrangian and the relevant operators:[arXiv:9909265]

 $\mathcal{L}_{eff}\supset\sum_{\alpha,\beta}\sum_{ij}\frac{c_{\alpha\beta}^{ij}}{\Lambda^{2}}\mathcal{O}_{\alpha\beta}^{ij}, \quad \text{Four Fermi contact interactions (eee}\tau)$ $\mathcal{O}_{RL}^{S,ij} \ = \ (\overline{\ell}_{jL}\ell_{iR}) \left(\overline{\ell}_{jL}\ell_{jR}\right), \qquad \mathcal{O}_{LR}^{S,ij} = \left(\overline{\ell}_{iR}\ell_{jL}\right) \left(\overline{\ell}_{jR}\ell_{jL}\right), \quad \text{Scalar type}$ $\mathcal{O}_{RR}^{V,ij} \ = \ (\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR}) \left(\overline{\ell}_{jR}\gamma_{\mu}\ell_{jR}\right), \qquad \mathcal{O}_{LL}^{V,ij} = \left(\overline{\ell}_{iL}\gamma^{\mu}\ell_{jL}\right) \left(\overline{\ell}_{V,jL}\gamma_{\mu}\ell_{jL}\right), \quad \text{Vector type}$ $\mathcal{O}_{LR}^{V,ij} \ = \ (\overline{\ell}_{iL}\gamma^{\mu}\ell_{jL}), \left(\overline{\ell}_{jR}\gamma_{\mu}\ell_{jR}\right), \qquad \mathcal{O}_{RL}^{V,ij} = \left(\overline{\ell}_{iR}\gamma^{\mu}\ell_{jR}\right) \left(\overline{\ell}_{iL}\gamma_{\mu}\ell_{iL}\right), \quad \text{Vector type}$

DATA SIMULATION

(showering) aMC@NLO (ILD-like)

The theoretical cross section of $e^-e^+ o e^\pm au^\mp$:

[arXiv: 0611222]

 $\mathbf{e}^{\mp} \tau_{\mathrm{h}}^{\pm}$) [fb]

$$\sigma(s) = \frac{s}{96\pi\Lambda^4} \Big\{ (|c_{LR}^S|^2 + |c_{RL}^S|^2) + 16(|c_{LL}^V|^2 + |c_{RR}^V|^2 + |c_{LR}^V|^2 + |c_{RL}^V|^2) \Big\}$$

$$\sigma(e^-e^+ \to e\tau) \propto s$$

ISR effects are considered using the MGISR plugin

[arXiv:1705.04486] [arXiv:1804.00125]

ANALYSIS STRATEGY

Four FCC-ee benchmarks

C.M. Energy (GeV)	365	240	162.5	157.5
Integrated luminosity (ab^{-1})	1.5	5	5	5

Event selection:

- Exactly 1 tau-tagged jet (Hadronic decay)
- Exactly 1 electron (positron)
- Opposite sign leptons

- $P_T > 20$ GeV for tau
- $P_T > 10$ GeV for electron (positron)
- $|\eta| \le 2.5$ for all objects
- $\Delta R > 0.5$ GeV for all objects
- RelIso < 0.15; The ratio of the sum of P_T of charged particle tracks inside a cone of size 0.5 around the electron track to P_T of the electron.

ANALYSIS STRATEGY

■ To enhance the sensitivity, we apply additional cuts on (for \sqrt{s} =240 GeV):

RESULTS & DISCUSSION

- In order to achieve better sensitivity, the results from four energy benchmarks are combined.
- Comparison to the Belle-II experiment with 50 ab^{-1} data [arXiv:1808.10567]

5% uncertainty on both signal efficiency and on background expectation at 365 GeV:

THANKS FORYOUR ATTENTION!

LFV among 1st and 2nd generations: tightly constrained by experimental constraints arising from:

 $\mu \rightarrow 3e$ at SINDRUM experiment

Muon transition to $e\gamma$

arXiv:1605.05081

e-µ conversion

Eur. Phys. J. C 47, 337-346 (2006)

However,

- Constraints on LFVs between e and τ , and μ and τ are much looser \Rightarrow eee τ couplings
- In addition to the $eee\tau$ four-Fermi contact interactions

Other favorite interactions — eeqq'

arXiv: 1602.01698, 2101.05286, ...

Nucl. Phys. B 299 (1988)

Electrons and Higgs-Z

eeHZ

Leptons and quarks

Background processes:

(I)
$$e^{-}e^{+} \to e^{\pm}\tau^{\mp}\nu\bar{\nu}$$
,
(II) $e^{-}e^{+} \to \tau^{+}\tau^{-}$,
(III) $e^{-}e^{+} \to \ell^{\pm}\ell^{\mp}\ell'^{\pm}\ell'^{\mp} (\ell, \ell' = e, \mu, \tau)$,
(IV) $e^{-}e^{+} \to \ell^{\pm}\ell^{\mp}jj \ (\ell = e, \mu, \tau)$,
(V) $e^{-}e^{+} \to \ell^{\pm}\nu jj (\ell = e, \mu, \tau)$,
(VI) $e^{-}e^{+} \to jj$.

TABLE I. The cross sections of signal $e^-e^+ \to e^\pm \tau^\mp$ and main background processes with their corresponding uncertainties are presented. The cross section of two signal scenarios are given assuming $c_{LR}^V=0.1$, $c_{LR}^S=0.1$, and $\Lambda=1$ TeV. The cross sections are in the unit of fb and include the ISR effects.

\sqrt{s} [GeV]	$c_{LR}^V = 0.1$	$c_{LR}^S = 0.1$	ετνῦ	$ auar{ au}$	$\ellar{\ell}\ell'ar{\ell}'$	$\ellar{\ell}jj$	$\ell u j j$	jj
157.5	4.72 ± 0.007	0.29 ± 0.0004	22.33 ± 0.07	11076.5 ± 3.4	39.86 ± 0.08	80.95 ± 0.2	272.9 ± 0.4	32032 ± 8.1
162.5	5.02 ± 0.007	0.31 ± 0.0004	102.12 ± 0.3	10275.8 ± 2.9	42.23 ± 0.08	83.06 ± 0.3	1198.05 ± 0.8	29133 ± 6.2
240	10.98 ± 0.04	0.69 ± 0.0008	415.63 ± 0.6	4196.8 ± 1.2	86.24 ± 0.2	217.8 ± 0.5	4552.7 ± 1.3	10481 ± 3.5
365	25.26 ± 0.07	1.57 ± 0.002	327.59 ± 0.5	1803.6 ± 0.6	85.05 ± 0.1	195.13 ± 0.3	3247.02 ± 1.1	4306 ± 1.2

LFV *eeeτ* contact interactions previous studies:

The LFV contact operators probed: [arXiv1410.1485]

- Via $e^-e^+ \to e^{\pm}\tau^{\mp}$ process at \sqrt{s} = 250, 500, 1000, 3000 GeV.
- Considering two main background sources, $\tau\tau$ and $e\tau vv$.

Similar study at \sqrt{s} = 250, 500, 1000 GeV: [arXiv1803.10475]

- The effects of polarization beams.
- Detector response
- The main source of backgrounds of $e\tau vv$.

In this study:

Four FCC-ee benchmarks

other main backgrounds

ISR effect

statistical data combination

■ ISR effects are considered using the MGISR plugin (MadGraph5 version: 2.6.6) [arXiv:170]

[arXiv:1705.04486] [arXiv:1804.00125]

$\sqrt{s} \; [\mathrm{GeV}]$	$ auar{ au}$ (without ISR)	$ auar{ au}$ (with ISR)
4020	10.60 1	11050
157.5	4869.4	11076.5
162.5	4514.9	10275.8
	1511.5	
240	1910.5	4196.8
365	804.15	1803.6

ee $\rightarrow \tau\tau$ cross section [fb]

$$M_Z = 91.188 \text{ GeV}$$

$$m_{\tau} = 1.777 \; \text{GeV}$$

SM relevant input values:

$$G_F = 1.166 \times 10^{-5} \text{ GeV}^{-2}$$

$$\alpha_e = 1/127.9$$

$$\alpha_s = 0.118$$


```
##############
# tau-tagging
##############
module TauTagging TauTagging {
  set ParticleInputArray Delphes/allParticles
  set PartonInputArray Delphes/partons
  set JetInputArray JetEnergyScale/jets
  set DeltaR 0.5
  set TauPTMin 1.0
  set TauEtaMax 4.0
  # add EfficiencyFormula {abs(PDG code)} {efficiency formula as a function of eta and pt}
  # default efficiency formula (misidentification rate)
  add EfficiencyFormula {0} {0.001}
  # efficiency formula for tau-jets
  add EfficiencyFormula {15} {0.4}
```



```
module Efficiency ElectronEfficiency {
efficiency
 set InputArray ElectronFilter/electrons
         set OutputArray electrons
         # set EfficiencyFormula {efficiency formula as a function of eta and pt}
         # efficiency formula for electrons
         set EfficiencyFormula {
                                                                           (pt \le 10.0) * (0.00) +
                                                      (abs(eta) \le 1.5) * (pt > 10.0) * (0.95) +
                                  (abs(eta) > 1.5 \&\& abs(eta) <= 2.5) * (pt > 10.0)
                                   (abs(eta) > 2.5)
                                                                                         * (0.00)}
  isolation
***************
       module Isolation ElectronIsolation {
         set CandidateInputArray ElectronEfficiency/electrons
         set IsolationInputArray EFlowFilter/eflow
         set OutputArray electrons
  Electron
         set DeltaRMax 0.5
         set PTMin 0.5
         set PTRatioMax 0.12
```


• For electrons with $P_T > 10$ GeV and $|\eta| \le 2.5$, the identification efficiency in the ILD card is 95%.

- The efficiency in the ILD simulation card is 40% and the tau misidentification rate is assumed to be equal 0.1%.
- considering the τ tagging efficiency, a jet is considered potentially as a τ candidate if a generated τ exists within a bellow distance from the jet axis.

$$\Delta R = \sqrt{(\eta_{\rm jet} - \eta_{\tau})^2 + (\phi_{\rm jet} - \phi_{\tau})^2} = 0.3$$

It is notable that the Met distribution has different behaviours for cV LL and cV LR which arises from the fact that for LL coupling $d\sigma/d\cos\theta \propto (1+\cos\theta)^2$

for RL coupling $d\sigma/d\cos\theta \propto (1-\cos\theta)^2$

■ The optimized lower cuts on the energy of electron are obtained to be 78.6, 81.0, 119.7 and 182.0 GeV for center-of-mass energy of 157.5, 162.5, 240 and 365 GeV, respectively.

About the $ee \rightarrow jj$ background:

- This process contributes to the backgrounds. But ...
- The jet fake probability is expected to be 0.1%.
- The rate of this background is assessed to be less than 5% of the total background contributions after event selection criteria.

	Signal		SM Backgrounds					
$\sqrt{s} = 157.5 \text{ GeV}$	$c_{LR}^{V} = 0.1$	$c_{LR}^{S} = 0.1$	$e \tau \nu \bar{\nu}$	$ auar{ au}$	eee'e'	$\ell \overline{\ell} j j$	$\ell \nu j j$	
(I): Pre-selection cuts	0.1746	0.1698	0.099	0.045	4.9×10^{-3}	1.4×10^{-3}	3.3×10^{-4}	
(II): $M_{e\tau} > 65 \text{ GeV}$	0.1741	0.1697	0.038	0.019	2.2×10^{-3}	1.8×10^{-4}	7.5×10^{-5}	
(III): $E_e > 78.6 \text{ GeV}$	0.0984	0.0831	2.8×10^{-8}	1.5×10^{-7}	6.02×10^{-6}	1.7×10^{-7}	0.0	
$\sqrt{s} = 162.5 \text{ GeV}$	Signal			SM Backgrounds				
$\sqrt{s} = 102.5 \text{ GeV}$	$c_{LR}^V = 0.1$	$c_{LR}^S = 0.1$	$e \tau \nu \bar{\nu}$	$ auar{ au}$	$\ell \bar{\ell} \ell' \bar{\ell}'$	$\ell ar{\ell} j j$	$\ell u j j$	
(I): Pre-selection cuts	0.1727	0.1711	0.106	0.048	4.9×10^{-3}	1.6×10^{-3}	4.5×10^{-4}	
(II): $M_{e\tau} > 65 \text{ GeV}$	0.1727	0.1710	0.041	0.025	2.4×10^{-3}	2.1×10^{-4}	1.0×10^{-4}	
(III): $E_e > 81 \text{ GeV}$	0.1122	0.0949	6×10^{-8}	2.0×10^{-7}	$3.61 imes 10^{-6}$	$2.1 imes 10^{-7}$	0.0	
	Signal							
$\sqrt{a} = 240 \text{ CeV}$	Sig	nal		SM E	Backgrounds			
$\sqrt{s} = 240 \text{ GeV}$	$c_{LR}^V = 0.1$	$c_{LR}^{\rm S} = 0.1$	eτνū	$ auar{ au}$	Backgrounds $\ell\ell\ell'\ell'$	$\ell\ell jj$	$\ell u j j$	
$\sqrt{s} = 240 \text{ GeV}$ I): Pre-selection cuts			$e \tau \nu \bar{\nu}$ 0.131			$\ell\ell jj \\ 6.2 \times 10^{-3}$	$\frac{\ell\nu jj}{4.9\times 10^{-4}}$	
I): Pre-selection cuts (II): $M_{e\tau} > 100 \text{ GeV}$	$c_{LR}^V = 0.1$	$c_{LR}^S = 0.1$		$ auar{ au}$	$\ell\ell\ell'\ell'$			
I): Pre-selection cuts	$c_{LR}^{V} = 0.1$ 0.2156	$c_{LR}^S = 0.1$ 0.2137	0.131	$ \begin{array}{c c} \tau \bar{\tau} \\ \hline 0.037 \end{array} $	$\frac{\ell\ell\ell'\ell'}{8.8\times10^{-3}}$	6.2×10^{-3}	4.9×10^{-4}	
I): Pre-selection cuts (II): $M_{e\tau} > 100 \text{ GeV}$ (III): $E_e > 119.7 \text{ GeV}$	$\begin{bmatrix} c_{LR}^V = 0.1 \\ 0.2156 \\ 0.2150 \\ 0.1072 \end{bmatrix}$	$c_{LR}^S = 0.1$ 0.2137 0.2134	0.131 0.084	$ \begin{array}{c} \tau \bar{\tau} \\ 0.037 \\ 0.017 \\ 1.5 \times 10^{-7} \end{array} $	$ \begin{array}{c} \ell\ell\ell'\ell' \\ 8.8 \times 10^{-3} \\ 1.6 \times 10^{-3} \end{array} $	6.2×10^{-3} 2.4×10^{-4}	4.9×10^{-4} 2.0×10^{-4}	
I): Pre-selection cuts (II): $M_{e\tau} > 100 \text{ GeV}$	$\begin{bmatrix} c_{LR}^V = 0.1 \\ 0.2156 \\ 0.2150 \\ 0.1072 \end{bmatrix}$	$c_{LR}^S = 0.1$ 0.2137 0.2134 0.0989	0.131 0.084	$ \begin{array}{c} \tau \bar{\tau} \\ 0.037 \\ 0.017 \\ 1.5 \times 10^{-7} \end{array} $	$ \begin{array}{c} \ell\ell\ell'\ell' \\ 8.8 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.2 \times 10^{-5} \end{array} $	6.2×10^{-3} 2.4×10^{-4}	4.9×10^{-4} 2.0×10^{-4}	
I): Pre-selection cuts (II): $M_{e\tau} > 100 \text{ GeV}$ (III): $E_e > 119.7 \text{ GeV}$	$c_{LR}^{V} = 0.1$ $\begin{pmatrix} 0.2156 \\ 0.2150 \\ 0.1072 \end{pmatrix}$ Sig	$c_{LR}^S = 0.1$ 0.2137 0.2134 0.0989 mal	$0.131 \\ 0.084 \\ 2.1 \times 10^{-8}$	$ \begin{array}{c c} \tau \bar{\tau} \\ \hline 0.037 \\ 0.017 \\ 1.5 \times 10^{-7} \end{array} $ SM F	$ \begin{array}{c} \ell\ell\ell'\ell' \\ 8.8 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.2 \times 10^{-5} \end{array} $ Backgrounds	6.2×10^{-3} 2.4×10^{-4} 2.4×10^{-7}	$ \begin{array}{c} 4.9 \times 10^{-4} \\ 2.0 \times 10^{-4} \\ 0.0 \end{array} $	
I): Pre-selection cuts (II): $M_{e\tau} > 100 \text{ GeV}$ (II): $E_e > 119.7 \text{ GeV}$ $\sqrt{s} = 365 \text{ GeV}$	$c_{LR}^{V} = 0.1$ $\begin{pmatrix} 0.2156 \\ 0.2150 \\ 0.1072 \end{pmatrix}$ Sig	$c_{LR}^{S} = 0.1$ 0.2137 0.2134 0.0989 $c_{LR}^{S} = 0.1$	0.131 0.084 2.1×10^{-8} $e\tau\nu\bar{\nu}$	$ \begin{array}{c} \tau\bar{\tau} \\ \hline 0.037 \\ 0.017 \\ 1.5 \times 10^{-7} \end{array} $ SM F	$ \begin{array}{c} \ell\ell\ell'\ell' \\ 8.8 \times 10^{-3} \\ 1.6 \times 10^{-3} \\ 1.2 \times 10^{-5} \end{array} $ Backgrounds $ \ell\ell\ell'\ell' $	$6.2 \times 10^{-3} 2.4 \times 10^{-4} 2.4 \times 10^{-7} \ell \ell j j$	$ \begin{array}{c} 4.9 \times 10^{-4} \\ 2.0 \times 10^{-4} \\ 0.0 \end{array} $ $ \ell \nu j j$	

- In order to achieve better sensitivity, the results from four energy benchmarks are combined.
- Comparison to the Belle-II experiment with 50 ab^{-1} data [arXiv:1808.10567]
- Comparison to a study at $\sqrt{s}=1$ TeV with beam polarization: $P(e^-)=0.8, P(e^+)=-0.3$ [arXiv:1803.10475]

\sqrt{s} (GeV) , \mathcal{L} (ab ⁻¹)	$\frac{c_{LL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{RR}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{RL}^{V}}{\Lambda^{2}} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{LR}^{V}}{\Lambda^{2}}[\times 10^{-9}](\text{ GeV}^{-2})$	$\frac{c_{RL}^S}{\Lambda^2} [\times 10^{-9}] (\text{ GeV}^{-2})$	$\frac{c_{LR}^S}{\Lambda^2} [\times 10^{-9}] (\text{ GeV}^{-2})$
157.5 , 5	5.82	5.46	5.74	5.36	21.18	22.61
162.5 , 5	5.71	5.36	5.62	5.29	21.42	23.12
240,5	3.69	3.50	3.73	3.53	14.81	14.74
365, 1.5	3.93	3.94	3.92	3.93	15.80	15.80
Combination	1.32	1.25	1.32	1.25	5.1	5.3
Belle II	1.06	1.06	1.55	1.55	4.29	4.29
$\sqrt{s} = 1$ TeV, pol. beam	4.3	1.1	1.6	1.8	13	5.9

Limit setting method

- The CLs technique is exploited to find upper limits on the signal cross section
- The RooStats package is used to perform the numerical evaluation of the CLs.
- **CL**s technique: we define log-likelihood functions L_{Bkg} and $L_{Signal+Bkg}$ for the background hypothesis, and for the signal+background hypothesis as the multiplication of Poissonian likelihood functions.
- The p-value for hypothesis of signal+background and for the background hypothesis are determined using the log-likelihood ratio:

$$Q = -2ln(L_{\rm Signal+Bkg}/L_{\rm Bkg})$$

The signal cross section is constrained using

$$CL_s = P_{\mathrm{Signal+Bkg}}(Q > Q_0)/(1 - P_{\mathrm{Bkg}}(Q < Q_0)) \leq 0.05$$

Other info:

- There are a variety of theories that give rise to LFV. For instance, additional fermions present in the type III seesaw model or in the low-scale seesaw models give rise to large LFV effects
- production rate of the four-fermion interactions grows linearly with the squared center-of-mass energy s, and diverge when s → ∞ . However, one should note that we are working in a non-renormalizable formalism and these operators provide an acceptable description of physics at high energy up to an energy scale Λ .