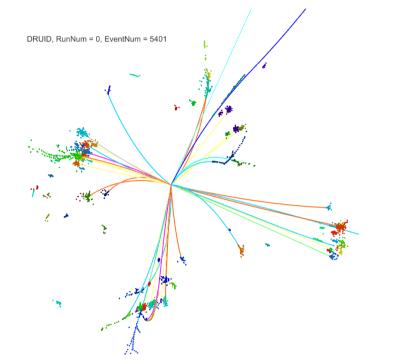

Physics measurements with Tau final state at the CEPC

Manqi Ruan

Higgs: linked to many known unknowns of the SM


- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry

m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)² ! ?

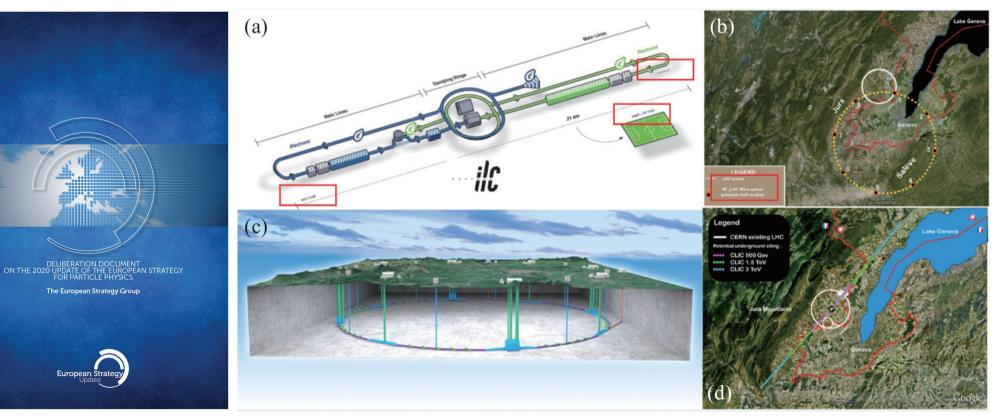
• Most issues related to Higgs

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~ o(10⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

11/6/2021

TAU 2021


Complementary 3

Electron Positron Higgs factories

High-priority future initiatives

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

ILC (a):TDR @ 2013FCC (b):CDR @ 2019CEPC (c):CDR @ 2018CLIC (d):CDR @ 2013

Key figures of the CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km
 - Precision test of the SM Low Energy Booster(0.4Km)

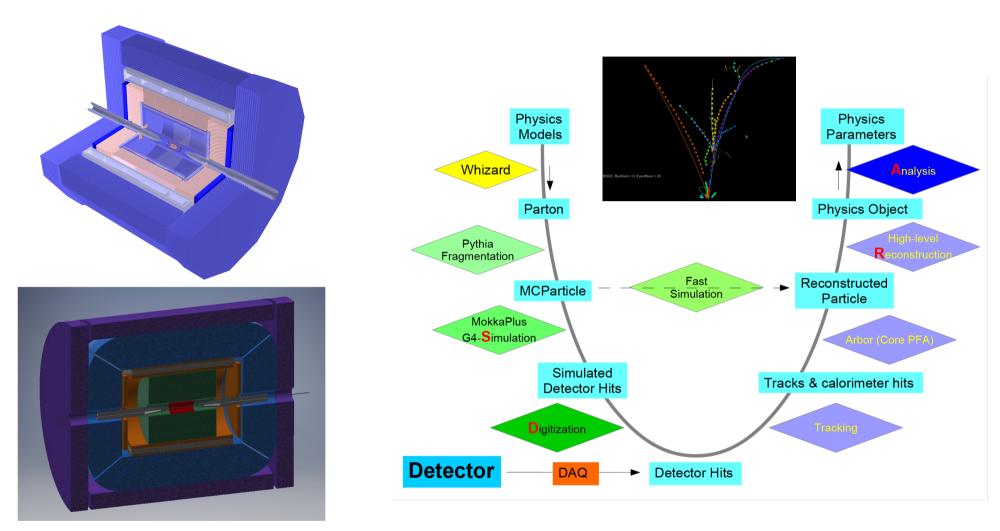
Booster(50Km

Proton Lina

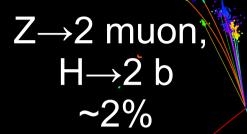
e+ e- Linac (240m)

Rare decay

IP4


- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision...

Complementary

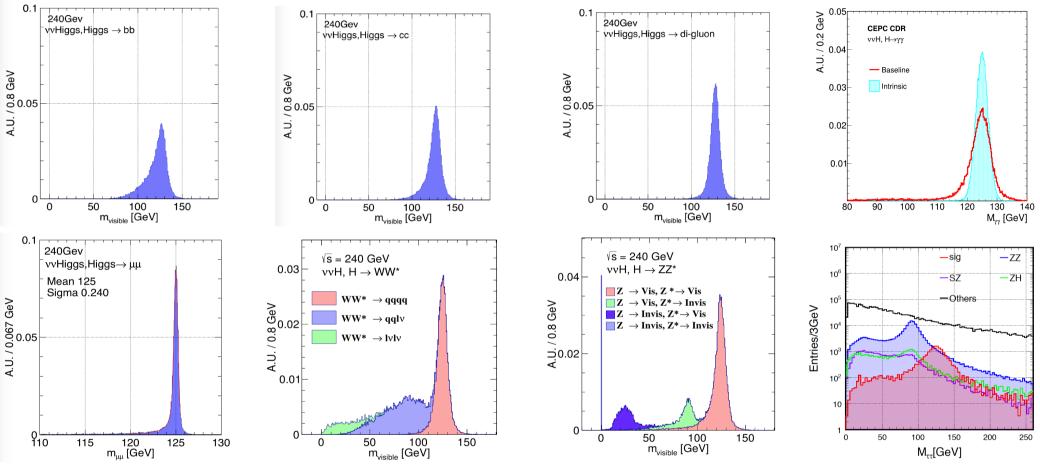

IP₂

IP3

Detector & Software

Full simulation reconstruction Chain functional, iterating/validation with hardware studies

Z→2 jet, \checkmark H→2 tau ~5%

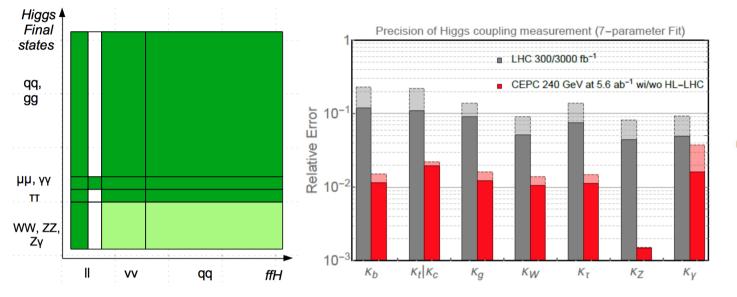

ZH \rightarrow 4 jets ~50%

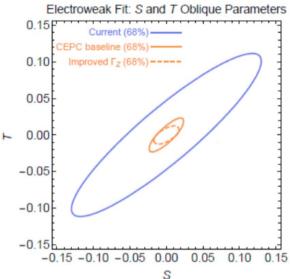
Z→2 muon H→WW*→eevv ~1%

11/6/2021

TAU 2021

Reconstructed Higgs Signatures

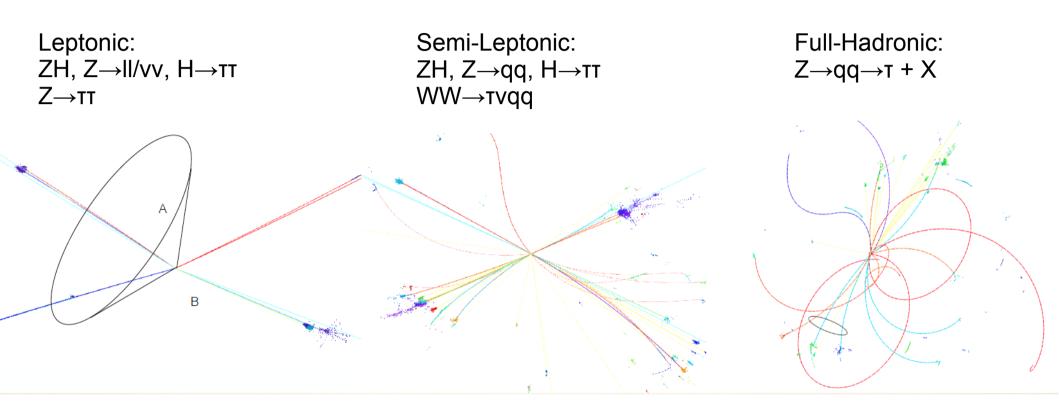



Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

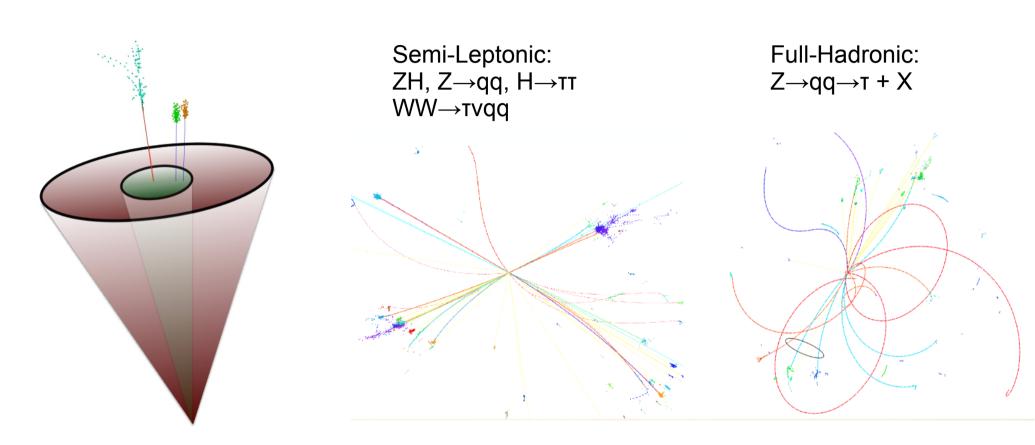
Right corner: di-tau mass distribution at qqH events using collinear approximation 11/6/2021 TAU 2021

Quantify the physics potential


70 OVERVIEW OF THE PHYSICS CASE FOR CEPC

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	$6 imes 10^{10}$	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$
B^0	$6 imes 10^{10}$	$3 \times 10^{10} (50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$	$3 imes 10^{13}$
B_s	2×10^{10}	$3 imes 10^8~(5\mathrm{ab^{-1}}~\mathrm{on}~\Upsilon(5S))$	$8 imes 10^{12}$
b baryons	1×10^{10}		$1 imes 10^{13}$
Λ_b	$1 imes 10^{10}$		$1 imes 10^{13}$
c hadrons			
D^0	2×10^{11}		
D^+	$6 imes 10^{10}$		
D_s^+	3×10^{10}		
Λ_c^+	2×10^{10}		
τ^+	3×10^{10}	$5 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$	

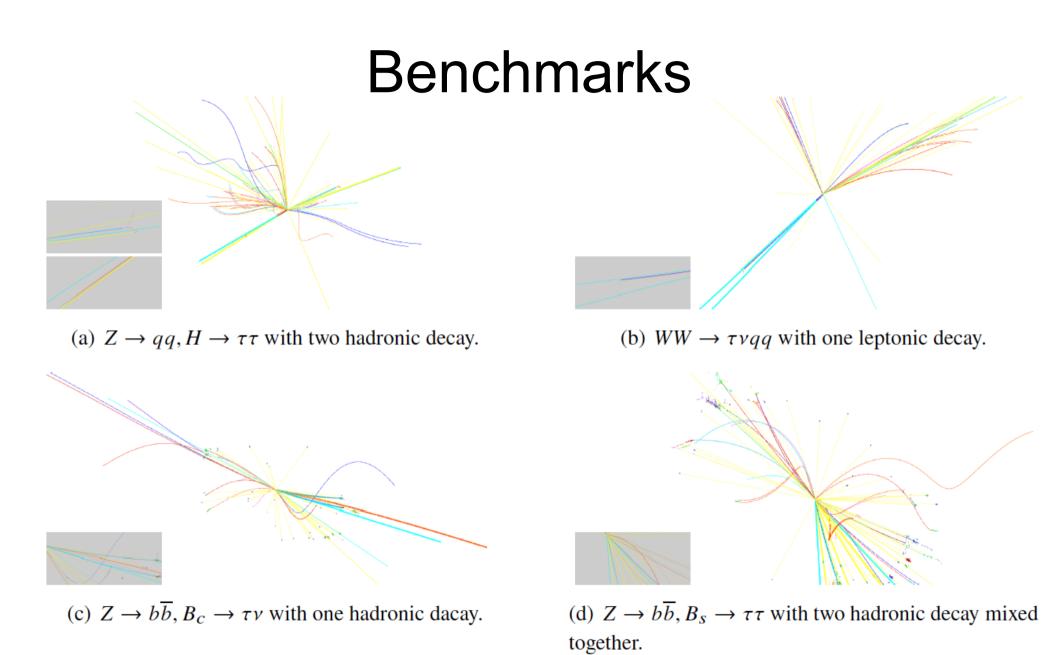
Observable Current sensitivity Future sensitivity Tera-Z sensitivity 2.8×10^{-7} (CDF) [438] $\sim 7 \times 10^{-10}$ (LHCb) [435] $\sim {\rm few} \times 10^{-10}$ $BR(B_s \rightarrow ee)$ $\sim 1.6 \times 10^{-10}$ (LHCb) [435] $\sim {\rm few} imes 10^{-10}$ $BR(B_s \to \mu\mu)$ 0.7×10^{-9} (LHCb) [437] $\sim 10^{-5}$ $BR(B_s \to \tau \tau)$ 5.2×10^{-3} (LHCb) [441] $\sim 5 \times 10^{-4}$ (LHCb) [435] R_K, R_{K^*} $\sim 10\%$ (LHCb) [443, 444] \sim few% (LHCb/Belle II) [435, 442] ~few % $BR(B \to K^* \tau \tau)$ $\sim 10^{-5}$ (Belle II) [442] $\sim 10^{-8}$ $\sim 10^{-6}$ (Belle II) [442] $\sim 10^{-6}$ $BR(B \to K^* \nu \nu)$ 4.0×10^{-5} (Belle) [449] 1.0×10^{-3} (LEP) [452] $\sim 10^{-6}$ $BR(B_s \to \phi \nu \bar{\nu})$ $\sim 10^{-6}$ $BR(\Lambda_b \to \Lambda \nu \bar{\nu})$ 4.4×10^{-8} (BaBar) [475] $\sim 10^{-9}$ (Belle II) [442] $BR(\tau \rightarrow \mu \gamma)$ $\sim 10^{-9}$ 2.1×10^{-8} (Belle) [476] $\sim \text{few} \times 10^{-10}$ (Belle II) [442] $\sim {\rm few} imes 10^{-10}$ $BR(\tau \rightarrow 3\mu)$ $\frac{\mathrm{BR}(\tau \rightarrow \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \rightarrow e \nu \bar{\nu})}$ 3.9×10^{-3} (BaBar) [464] $\sim 10^{-3}$ (Belle II) [442] $\sim 10^{-4}$ 7.5×10^{-7} (ATLAS) [471] $\sim 10^{-8}$ (ATLAS/CMS) $\sim 10^{-9} - 10^{-11}$ $BR(Z \rightarrow \mu e)$ $BR(Z \to \tau e)$ 9.8×10^{-6} (LEP) [469] $\sim 10^{-6}$ (ATLAS/CMS) $\sim 10^{-8} - 10^{-11}$ 1.2×10^{-5} (LEP) [470] $\sim 10^{-6}$ (ATLAS/CMS) $\sim 10^{-8} - 10^{-10}$ $BR(Z \to \tau \mu)$


Table 2.5: Order of magnitude estimates of the sensitivity to a number of key observables for which the tera-Z factory at CEPC might have interesting capabilities. The expected future sensitivities assume luminosities of 50 fb^{-1} at LHCb, 50 ab^{-1} at Belle II, and 3 ab^{-1} at ATLAS and CMS. For the tera-Z factory of CEPC we have assumed the production of $10^{12} Z$ bosons.

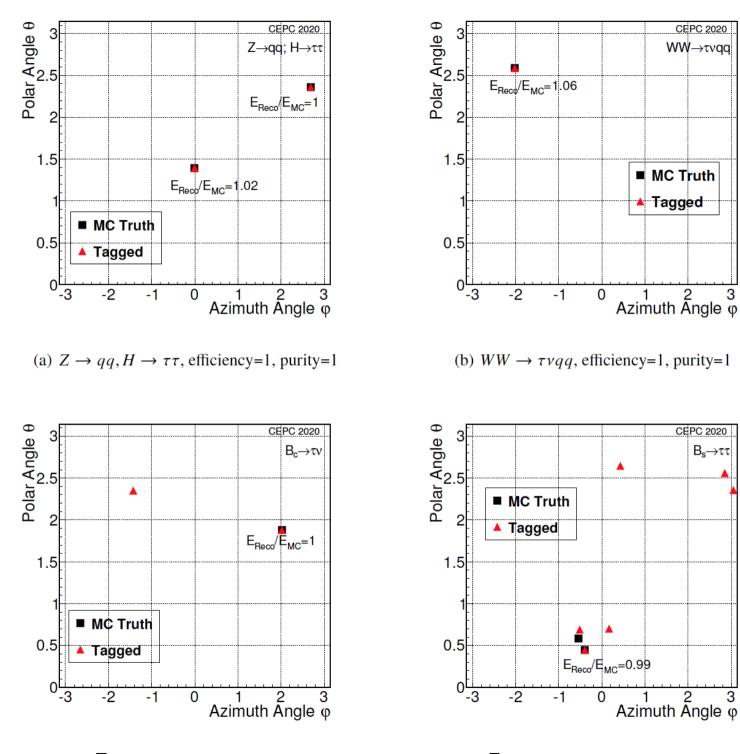
Taus at the CEPC

- Finding Tau
- Specify Tau decay product

Taus at the CEPC



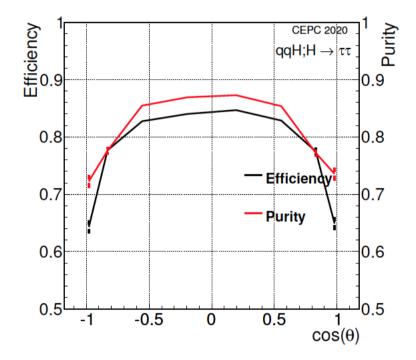
TAURUS (Tau ReconstrUction toolS):

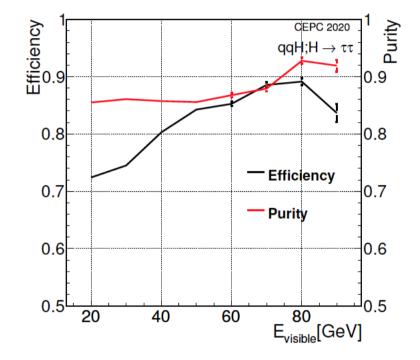

an overall efficiency*purity higher than 70% is achieved for qqtt, and qqtv events

TAURUS/Specify Tau decay product

11/6/2021

11/6/2021




(c) $Z \rightarrow b\overline{b}, B_c \rightarrow \tau \nu$, efficiency=1, purity=0.5

13

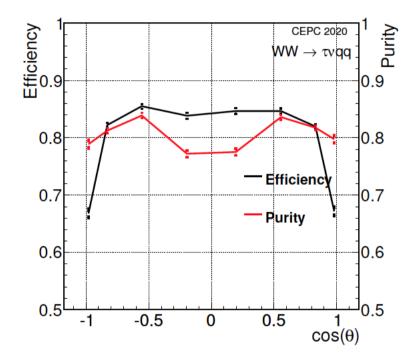
qqH, H→tt @ 240GeV: eff ~ 80%, purity ~ 85%

(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

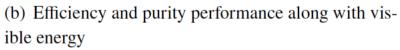
(b) Efficiency and purity performance along with visible energy. The performance above 80 GeV falls as a result of stringent cone selection.

WW→⊤vqq @ 240GeV: eff ~ 80%, purity ~ 85%

Efficiency 6.0


0.8

0.7


0.6

0.5

20

(a) Efficiency and purity performance along with polar (angle θ , parameters fixed.

60

40

Purity

0.9

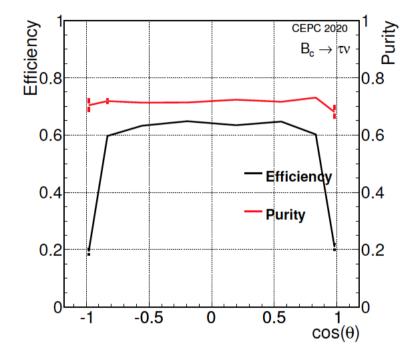
0.8

0.7

0.6

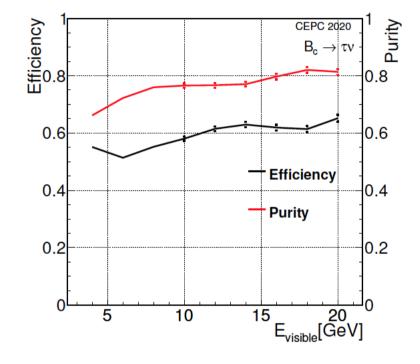
0.5

CEPC 2020

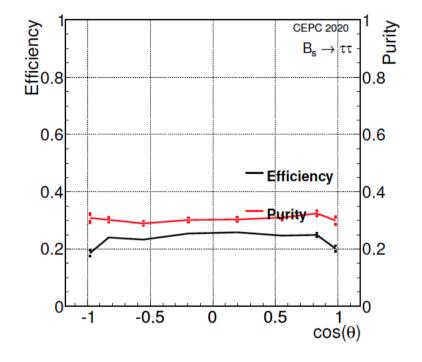

WW→τvqq

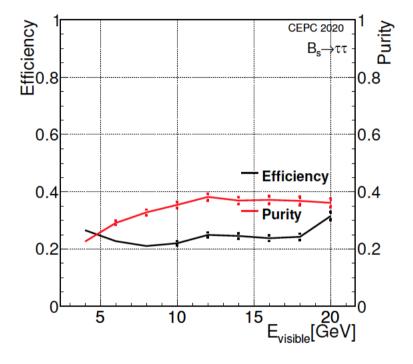
Efficiency

80 E_{visible}[GeV]


Purity

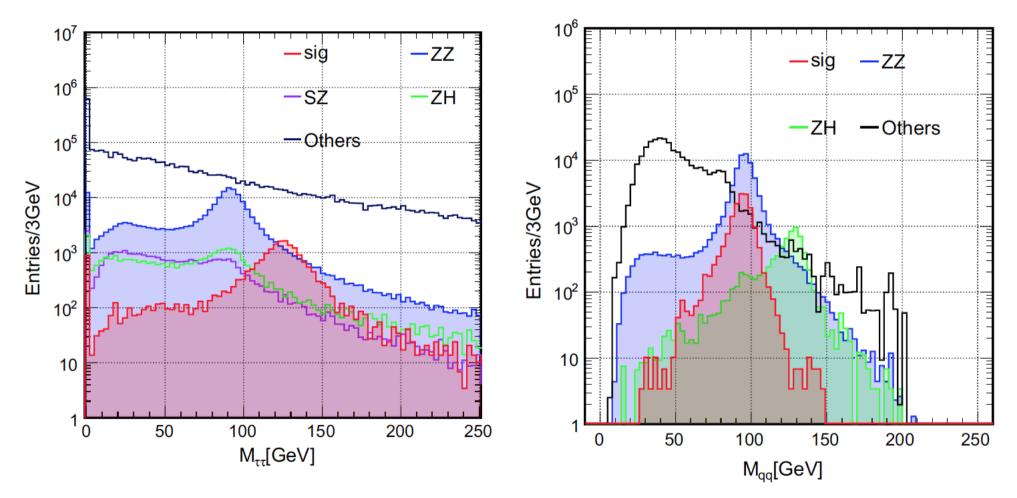
Z→bb, Bc→tv @ 91.2 GeV: eff ~ 60%, purity ~ 75%




(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

(b) Efficiency and purity performance along with visible energy

Z→bb, Bs→tt @ 91.2 GeV: eff ~ 25%, purity ~ 30%



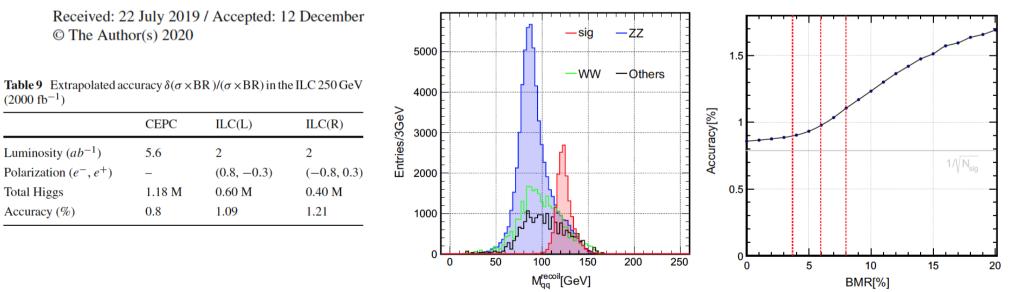
(a) Efficiency and purity performance along with polar angle θ , parameters fixed.

(b) Efficiency and purity performance along with visible energy

Signal strength measurement of qqH, $H \rightarrow \tau \tau @ 240 \text{ GeV}$

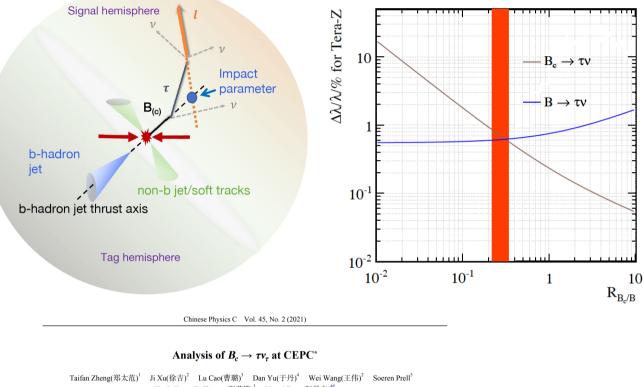
Invariant mass of di-tau: collinear approximation that assumes the neutrinos aligns with the direction of visible tau decay product 11/6/2021 TAU 2021 18

Regular Article - Experimental Physics


The measurement of the $H \rightarrow \tau \tau$ signal strength in the future e^+e^- Higgs factories

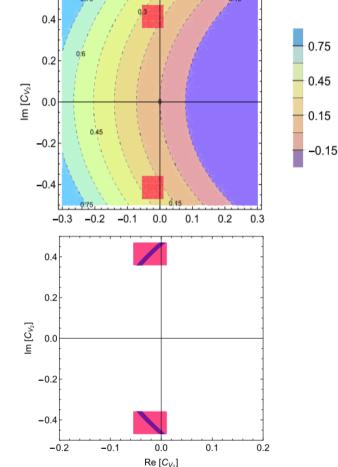
Dan Yu¹, Manqi Ruan^{1,a}, Vincent Boudry², Henri Videau², Jean-Claude Brient², Zhigang Wu¹, Qun Ouyang¹, Yue Xu³, Xin Chen³

¹ IHEP, Beijing, China


² LLR, Ecole Polytechnique, Palaiseau, France

³ Tsinghua University, Beijing, China

TAU 2021

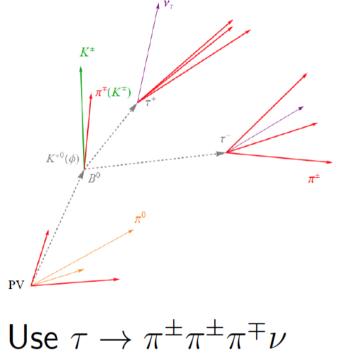

Bc->Tauv

Yeuk-Kwan E. Cheung(张若筠)¹ Manqi Ruan(阮曼奇)^{4†} ¹School of Physics, Nanjing University, Nanjing 210023, China ²INPAC, SKLPPC, MOE KLPPC, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China ⁴Physikalisches Institut der Rheinschen Friedrich-Wildhens-Universitä Bonn, S3115 Bonn, Germany

⁴Institute of High Energy Physics, Beijing 100049, China
⁵Department of Physics and Astronomy, Iowa State University, Ames, IA, USA

Abstract: Precise determination of the $B_c \rightarrow \tau \nu_{\tau}$ branching ratio provides an advantageous opportunity for understanding the electroweak structure of the Standard Model, measuring the CKM matrix element $|V_{cb}|$, and probing new physics models. In this paper, we discuss the potential of measuring the process $B_c \rightarrow \tau \nu_{\tau}$ with τ decaying leptonically at the proposed Circular Electron Positron Collider (CEPC). We conclude that during the Z pole operation, the channel signal can achieve five- σ significance with ~ 10⁹ Z decays, and the signal strength accuracies for $B_c \rightarrow \tau \nu_{\tau}$ can reach around 1% level at the nominal CEPC Z pole statistics of one trillion Z decays, assuming the total $B_c \rightarrow \tau \nu_{\tau}$ yield is 3.6 × 10⁶. Our theoretical analysis indicates the accuracy could provide a strong constraint on the general effective Hamiltonian for the $b \rightarrow \tau \nu$ transition. If the total B_c yield can be determined to O(1%) level of accuracy in the future, these results also imply $|V_{cb}|$ could be measured up to O(1%) level of accuracy.

Fig. 10. (color online) Constraints on the real and imaginary parts of C_{V_2} . The red shaded area corresponds to the current constraints using available data on $b \rightarrow c\tau v$ decays. If the central values in Eq. (9) remain while the uncertainty in $\Gamma(B_c^+ \rightarrow \tau^+ \nu_{\tau})$ is reduced to 1%, the allowed region for C_{V_2} shrinks to the dark-blue regions.

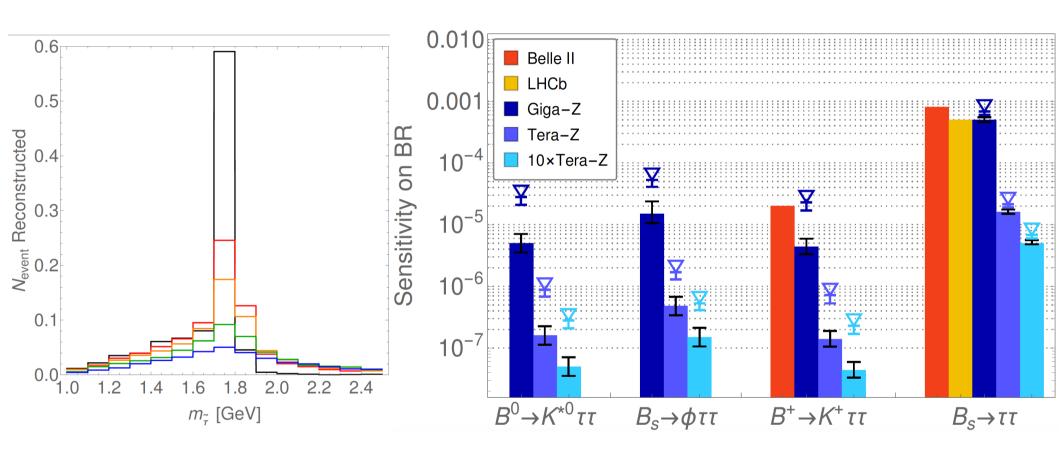

11/6/2021

Taifan, etc, Accepted by CPC. Collaborate with Wei Wang, et.al.

_)

LFU Test with $b \rightarrow s \tau \tau$ Measurements

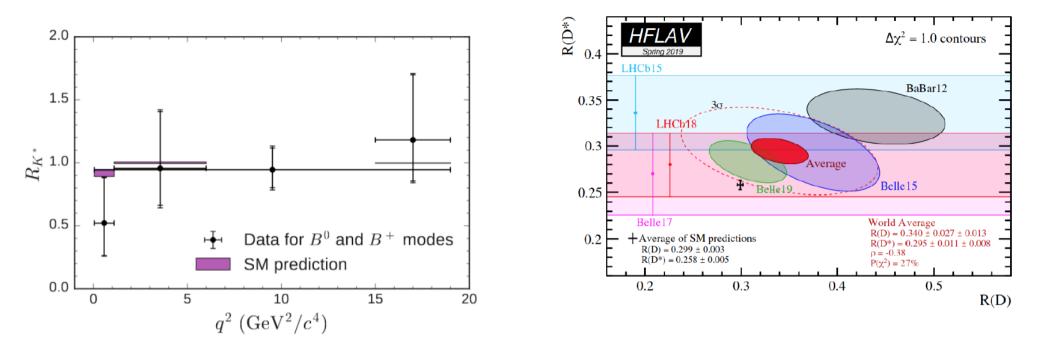
More details in the published work (arXiv:2012.00665) [Li and Liu(2020)]



Fake 3π vertex from $D_{(s)}^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp} + X$ decays:

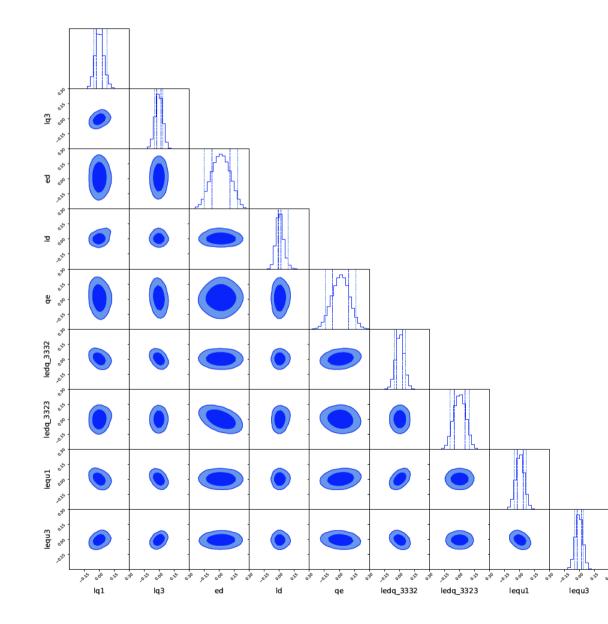
	Properties	Decay Mode	BR
τ^{\pm}	$m = 1.777 \mathrm{GeV}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$	9.3%
7-	$c au=87.0~\mu{ m m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}\nu$	4.6%
		$ au^{\pm} u$	5.5%
	$m=1.968~{ m GeV}$ $c au=151~\mu{ m m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	0.6%
D_s^{\pm}		$\pi^{\pm}\pi^{\pm}\pi^{\mp}2\pi^{0}$	4.6%
3		$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	0.3%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}\phi$	1.2%
	1.970 C $1/$	$ au^{\pm} u$	< 0.12%
D^{\pm}	$m = 1.870 {\rm GeV}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	1.1%
	$c au=311~\mu{ m m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	3.0%

decay to locate each vertex


Sensitive to VTX Performance

... Contamination of D decay that mimics tau 3-prong decay; reconstruction accuracy V.S final accuracy: ideal, 1, 2, 5, 10µm resolution

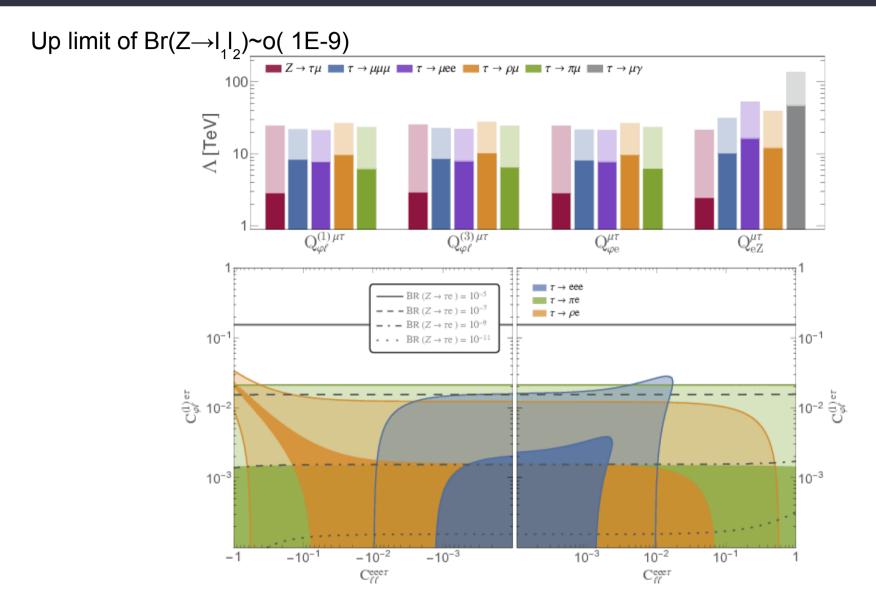
11/6/2021


B Anomalies Indicating LFUV

	Experimental	SM Prediction	Comments			
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01	$m_{\ell\ell} \in [1.0, 6.0] \text{ GeV}^2$, via B^{\pm} .			
R_{K^*}	$0.69\substack{+0.12 \\ -0.09}$	0.996 ± 0.002	$m_{\ell\ell} \in [1.1, 6.0]$ GeV ² , via B^0 .			
R_D	0.340 ± 0.030	0.299 ± 0.003	B^0 and B^{\pm} combined.			
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005	B^0 and B^{\pm} combined.			
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.25-0.28				
[Tanabashi et al., 2018][Altmannshofer et al., 2018].						

Lingfeng Li

Current Progress in LFU Tests (II)



Preliminary: 9 effective channels: $(R_{J/\psi}, R_{D_s}, R_{D_s^*}, R_{\Lambda_c}, B_c \rightarrow \tau \nu, B \rightarrow K \nu \bar{\nu}, B_s \rightarrow \phi \nu \bar{\nu}, B^0 \rightarrow K \tau \tau, B^0 \rightarrow K \tau \tau, B^+ \rightarrow K^+ \tau \tau, B_s \rightarrow \tau \tau...)$

Dim-6 SMEFT basis at NP scale Λ =3 TeV.

Lingfeng Li

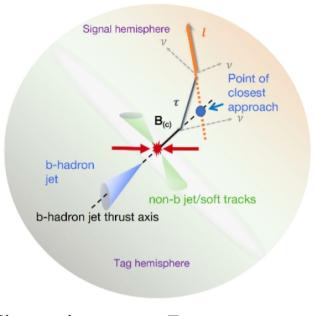
Lepton Flavor Violation (II)

[Calibbi et al., 2021] 2107.10273

Summary

- CEPC, a precision & upgradable Higgs/W/Z factory, and a Discover machine!
 - Boost the Higgs/EW precision by ~ 10 times w.r.t HL-LHC/current boundary
 - Huge potential on QCD, Flavor, BSM
- Tau is critical for CEPC physics: we estimated the accuracy for multiple physics benchmarks with tau in their final states
 - Higgs \rightarrow tautau; relative accuracy of 0.8%
 - $Z \rightarrow bb$, Bc \rightarrow Tauv; relative accuracy of o(1%)
 - $Z \rightarrow bb$, $b \rightarrow stautau$; sensitive to Br ~ 1E-6
- A dedicated tau finding algorithm, TAURUS has been developed at the CEPC baseline detector. It has a tau finding performance of:
 - Efficiency of 80% and purity of 85% at qqH, H->tautau and WW->tauvqq events.
 - Efficiency of 60% and purity of 75% at Z->bb, Bc->Tauv events.
 - Efficiency of 25% and purity of 30% at Z->bb, Bs->Tautau events.

Backup


LFV from Z & Tau decays

Lorenzo Calibbi, 2107.10273

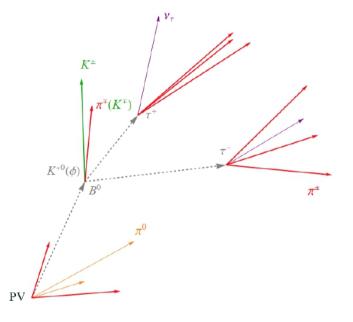
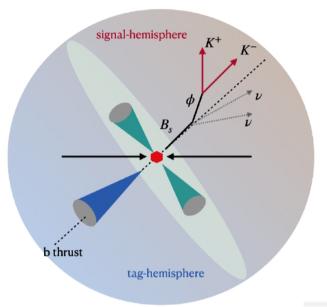

Mode	LEP bound (95% CL)	LHC bound (95% CL)	$\rm CEPC/FCC\text{-}ee$ exp.
$BR(Z \to \mu e)$	$1.7 imes 10^{-6}$ [2]	$7.5 imes 10^{-7}$ [3]	$10^{-8} - 10^{-10}$
$BR(Z \to \tau e)$	9.8×10^{-6} [2]	$5.0 imes 10^{-6}$ [4, 5]	10^{-9}
$BR(Z \to \tau \mu)$	1.2×10^{-5} [6]	$6.5 imes 10^{-6}$ [4, 5]	10^{-9}

Table 1: Current upper limits on LFV Z decays from LEP and LHC experiments and expected sensitivity of a Tera Z factory as estimated in [7] assuming 3×10^{12} visible Z decays.

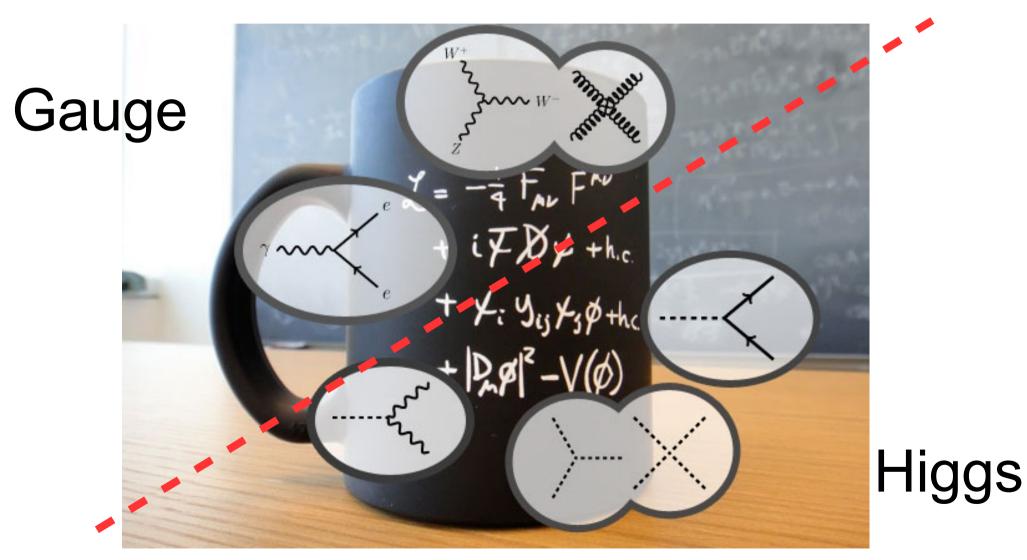
Current Progress in LFU Tests



Charged current $B_c \rightarrow \tau \nu$ decays [Zheng et al., 2020b]. Absolute precision $\sim 10^{-4}$.

Neutral current $b \rightarrow s \tau \tau$ decays [Li and Liu, 2020].

Absolute precision $\lesssim 10^{-6}$: $\sim 10^3 - 10^4$ improvement from current limits.



Neutral current $B_s \rightarrow \phi \nu \bar{\nu}$ decay [In preparation]

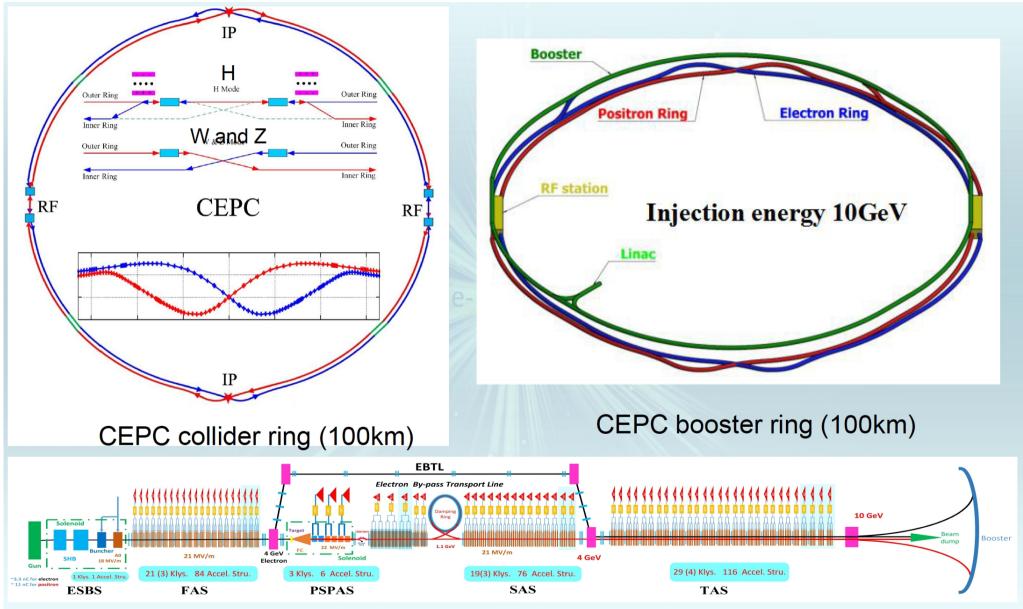
Absolute precision $\sim 10^{-7}.$

Unique opportunities at the Z-pole

The Higgs field: one of the two pillars of the SM

Timeline

CEPC Project Timeline


	²⁰¹⁵	2050 0505	2025 235	²⁰³⁰		²⁰³⁵	2040	²⁰⁶⁵
	Pre-Studies	Key Tech. R&D Engineering Design	Pre- Construction	Construction		Data Ta	aking	SPPC (pp/ep/eA)
CEPC-SPPC Concept			 Site select technology MoU, international MoU, international Mo		20	Higgs Tunnel and infrastr Accelerator compo- Installation, alignm commissioning Decision on detecto detector TDRs; Con installation and com	nents production; ent, calibration and ors and release of struction, nmissioning	
			HTS Ma	gnet R&D Program				1
	11/6/2021			TAU 2021				31

CDR released in Nov. 2018

- Baseline designs for the Accelerator, Detector & Software
 - Subsystems' designs supported with Prototype construction & test
- Physics potential

CEPC Accelerator Baseline Layout

CEPC CDR Parameters

D. Wang

	Higgs	W	Z (3T)	Z (2T)				
Number of IPs	2							
Beam energy (GeV)	120	80	45.	45.5				
Circumference (km)	100							
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036					
Crossing angle at IP (mrad)	•	16.5×2						
Piwinski angle	2.58	7.0	23.	8				
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0)				
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns-	+10%gap)				
Beam current (mA)	17.4	87.9	461.	.0				
Synchrotron radiation power /beam (MW)	30	30	16.	5				
Bending radius (km)		10.7						
Momentum compact (10-5)	1.11							
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001				
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016				
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04				
Beam-beam parameters ξ_x/ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072				
RF voltage V_{RF} (GV)	2.17	0.47	0.10					
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)							
Natural bunch length σ_z (mm)	2.72	2.98	2.42	2.42				
Bunch length σ_{z} (mm)	3.26	5.9	8.5	8.5				
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94					
Natural energy spread (%)	0.1	0.066	0.03	8				
Energy acceptance requirement (%)	1.35	0.4	0.4 0.23					
Energy acceptance by RF (%)	2.06	1.47 1.7		1				
Photon number due to beamstrahlung	0.1	0.05	0.023					
Lifetime _simulation (min)	ime_simulation (min) 100							
Lifetime (hour)	0.67	1.4	4.0	2.1				
F (hour glass)	0.89	0.94 0.99		9				
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1				

Recent Progresses

- Pursue higher luminosity... and develop upgrading plan to 360 GeV center of mass energies
- Accelerator Critical R&D
 - SRF
 - Klystron
 - High Temperature Iron Based Super Conductor & Magnets
- Detector & Software innovative R&D
- Physics studies: white papers, etc