

http://hyperk.org

Status of Hyper-Kamiokande T2HK

Alessandro Bravar on behalf of the HK Collaboration

TAU2021 Oct 01, 2021

Hyper-K Physics Overview

Broad Science Program with Hyper-K

Neutrino oscillation physics

comprehensive study with beam and atmospheric neutrinos determination of neutrino mass hierarchy determination of θ_{23} octant measurement of CP Violation in leptonic sector reveal exotic scenarios

Search for nucleon decay

possible discovery with ~10 × SK sensitivity all visible modes including p \rightarrow e⁺ π^0 and p $\rightarrow \overline{v}$ K⁺ reach 1035 years sensitivity

Solar neutrino physics

precision measurement of Δm_{21}^2 measurement of energy spectrum upturn discovery & measurement of hep neutrinos

Neutrino Astrophysics

high statistics measurement of SN burst neutrinos detection and study of relic SN neutrinos indirect Dark Matter search from Galactic Core, Sun, Earth

Geophysics ("neutrinography" of Earth's interior)

The Hyper-Kamiokande Detector

Large Water Cherenkov Detector

Larger mass for more statistics

Better sensitivity by more photons with improved sensors

Cherenkov light

Neutrino

Charged particle in water

Photosensors

total volume 260 kton fiducial volume 190 kton

inner detector 20,000 50 cm PMTs few 1,000 M-PMTs

outer detector 6,700 8 cm PMTs

Upgraded Photo-Sensors

high QE photocathode

dynode improvement

50 cm HQE **Box&Line PMT**

under validation

under validation

Enhanced performance

Photo Detection Efficiency 2 × bigger

Timing resolution 2 × as good

Increased Pressure tolerance × 2

- enhance p $\rightarrow \overline{v}$ K⁺ signal
- solar v lower threshold
- neutron capture signature $(n + p \rightarrow d + \gamma - 2.2 MeV \gamma)$

3 Generations of Kamioka Detectors

Kamiokande (1983 – 1996)

3 kton 20% coverage with 50 cm PMT

Observation of SN1987A

Super-Kamiokande (1996 –)

50 kton 40% coverage with 50 cm PMT

Discovery of v oscillations

260 kton 20% coverage with high-QE 50 cm PMT

The Hyper-K Collaboration

19 countries 93 institutes ~450 members (and growing)

January 2015

ICRR

From J-PARC to Kamioka (T2HK)

260 kton Water Cherenkov Detector

Upgraded J-PARC neutrino beam New / upgraded near detectors

Beamline Upgrade

The Near Detectors @ J-PARC

upgraded ND280 Near Detector

designed to address v – Nucleus interactions and modeling enlarge phase space (4π coverage) efficiency for short hadron tracks with proton reconstruction

improve electron neutrino selection

new: horizontal TPCs scintillator target ToF

2.5°

Intermediate Water Cherenkov

~600 ton water Cherenkov located at ~1 km from v source

off-axis angle spanning orientation vary ν peak energy

probe neutrino energy vs. reconstructed energy

multi-PMT units (good reconstruction despite small det.)

potential to loading with Gd to measure neutron production

Beam Events in T2HK: v_e appearance

10 years data taking 190 kton fiducial × 1.3 MW

δ=0	Signal $(v_{\mu} \rightarrow v_e CC)$	Wrong sign appearance	$ \begin{array}{c} \nu_{\mu} , \overline{\nu}_{\mu} \\ \hline CC \end{array} $	Beam v_e , \bar{v}_e contamination	NC
V beam	2300	21	10	362	188
$\overline{\overline{V}}$ beam	1656	289	6	444	274

T2HK Sensitivity to δ_{CP}

assumes normal ordering known

significance to exclude $\delta_{CP} = 0$

$\sin \delta_{CP} = 0$ exclusion:

~8- σ significance if δ_{CP} = ±90°

 \sim 6-σ significance if δ_{CP} = ±45°

~80% coverage of δ_{CP} parameter space

fraction of δ_{CP} values for which $\sin(\delta_{CP}) = 0$ can be excluded

accuracy for 2 different δ_{CP} values

Mass Hierarchy

295 km baseline does not produce significant matter effects atmospheric neutrinos are sensitive to matter effects in Earth beam v + atmospheric v \rightarrow sensitivity to mass ordering atmospheric neutrinos allow to break possible degeneracies between MH and δ_{CP} when MH is unknown

>3 σ ability to reject wrong MH 5 σ for larger values of $\sin^2 \theta_{23}$

sensitivity to θ_{23} octant

More Physics with Atmospheric v

Atmospheric v:

neutrinos with various energy, flight length, and flavor

 v_{τ} cross section measurement

Sterile neutrinos

Lorentz violation studies

 $(3 - 4 \times \text{stronger than current SK limits})$

dark matter annihilation into SM part.

 $(3 - 5 \times \text{stronger than current SK limits})$

Hyper-K Schedule

5

Summary

A new adventure in v Physics to start

Hyper-K next generation neutrino experiment, 190 kton fiducial volume Hyper-K will address major open questions in science

Neutrino CP violation and mass ordering

Proton decay

Astrophysics (SN neutrinos)

.

Construction of Hyper-K water Cherenkov is ongoing (started in 2020)

J-PARC beam upgrade to 1.3 MW

Upgrade Near Detectors

Intermediate Water Cherenkov Detector

Start to take data in 2027

