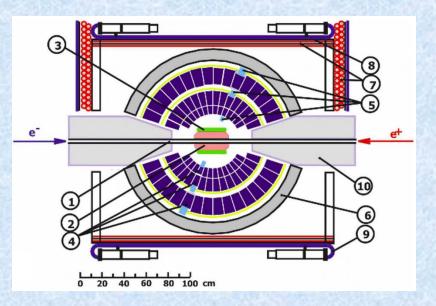


e⁺e⁻ hadronic cross-sections with SND detector at the VEPP-2000

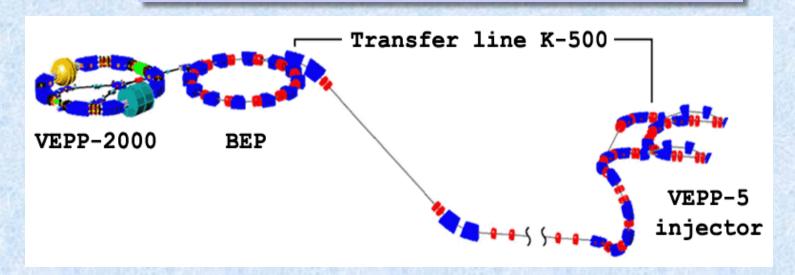
On the behalf of SND Collaboration

T.V.Dimova


30.09.2021

SND detector

NIM A449 (2000) 125-139


1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counters, 4 - NaI(Tl) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

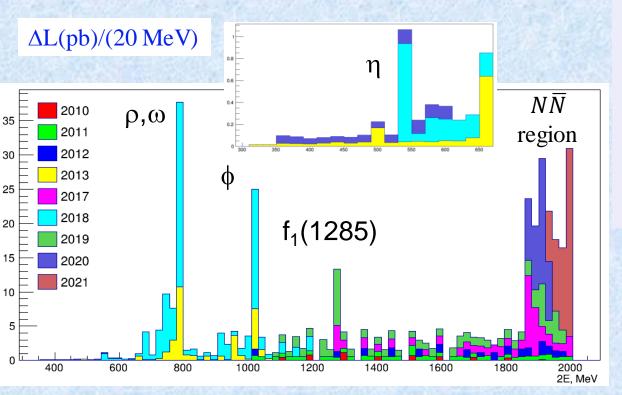
SND collected data at the VEPP-2M (1996-2000) and VEPP-2000 (2010-2013,2016-...)

Main physics task of SND is study of all possible processes of e⁺e⁻ annihilation into hadrons below 2 GeV.

- ☐ The total hadronic cross section, which is calculated as a sum of exclusive cross sections.
- ☐ Study of hadronization (dynamics of exclusive processes):
 - Properties of excited vector mesons of the ρ , ω , ϕ families
 - Development of MC event generator for e⁺e⁻ → hadrons below 2 GeV.

VEPP-2000 e⁺e⁻ collider

VEPP-2000 parameters:

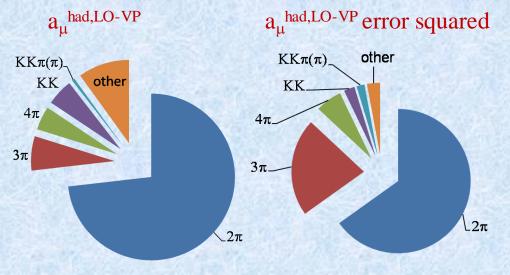

- c.m. energy E=0.3-2.0 GeV
- circumference 24.4 m
- round beam optics
- Luminosity at E=1.8 Γ 9B 1×10^{32} cm⁻² sec⁻¹ (project) 4×10^{31} cm⁻² sec⁻¹ (achieved)
- Two detectors: SND and CMD-3

2010-2013 – experiments, 70 pb⁻¹ 2013-2016 – upgrade, new injector 2016-... – experiments, 300 pb⁻¹

30.09.2021

SND data

	Below ϕ	Near o	Above
IL, pb ⁻¹	77	31	259.0
E _{cm} , GeV	0.30-0.97	0.98-1.05	1.05-2.00

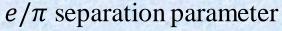


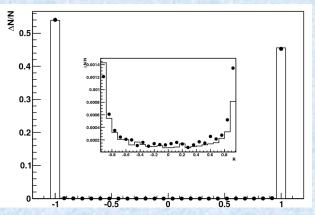
~20 hadronic processes are currently under analysis

30.09.2021

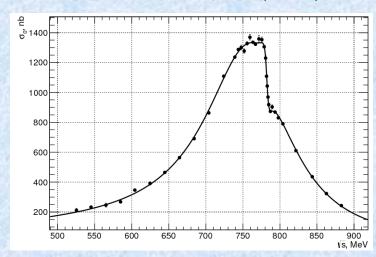
$e^+e^- \rightarrow \pi^+\pi^-$

The process $e^+e^- \to \pi^+\pi^-$ gives the largest contribution into $a_{\mu}^{had,LO-VP}$ and its error.



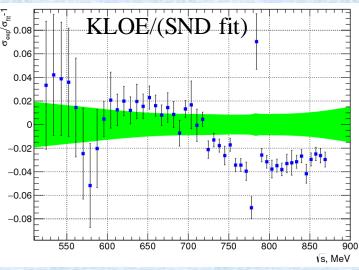

- ✓ There are many measurements of the $e^+e^- \rightarrow \pi^+\pi^-$ process, some of them have systematic uncertainty less than 1%.
- ✓ The most precise measurements with a systematic uncertainty of about 0.6% were done by BABAR and KLOE using the ISR technique.
- ✓ However, the difference between the BABAR an KLOE cross sections reaches several %.

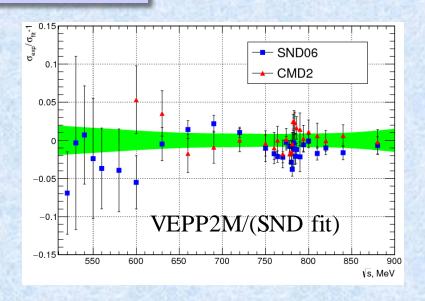
Experiments at VEPP-2000 use direct scan approach and may provide fully independent measurements with a sub-% accuracy.


$e^+e^- \rightarrow \pi^+\pi^-$

JHEP 01,113 (2021)

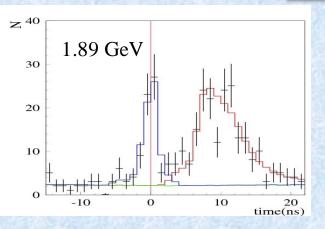
The analysis is based on 4.7 pb⁻¹ data recorded in 2013 (1/10 full SND data set)

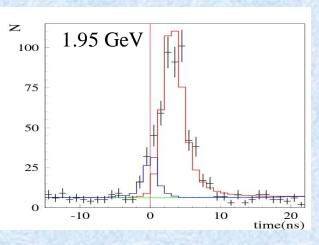

Systematic uncertainty on the cross section (%)


Source	< 0.6 GeV	0.6 - 0.9 GeV
Trigger	0.5	0.5
Selection criteria	0.6	0.6
e/π separation	0.5	0.1
Nucl. interaction	0.2	0.2
Theory	0.2	0.2
Total	0.9	0.8

	SND @ VEPP-2000	SND @ VEPP-2M	PDG
M _ρ , MeV	775.3±0.5±0.6	775.6±0.4±0.5	775.3±0.3
Γ_{ρ} , MeV	145.6±0.6±0.8	146.1±0.8±1.5	147.8±0.9
$B_{\text{pee}} \times 10^5$	4.89±0.2±0.4	4.88±0.2±0.6	4.72±0.5
$B_{\omega\pi\pi}$, %	1.77±0.08±0.02	1.66±0.08±0.05	1.53±0.06

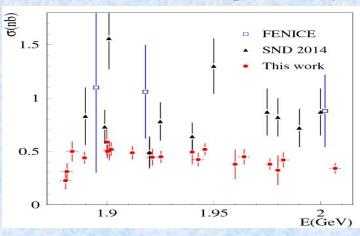
$e^+e^- \rightarrow \pi^+\pi^-$

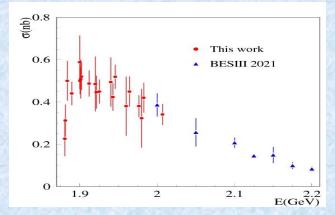



 $0.53 < \sqrt{s} < 0.88 \,\text{GeV}$

	$a_{\mu}(\pi^+\pi^-) \times 10^{10}$
SND & VEPP-2000	$409.8 \pm 1.4 \pm 3.9$
SND & VEPP-2M	$406.5 \pm 1.7 \pm 5.3$
BABAR	$413.6 \pm 2.0 \pm 2.3$
KLOE	$403.4 \pm 0.7 \pm 2.5$

30.09.2021 TAU2021


$e^+e^- \rightarrow n\bar{n}$



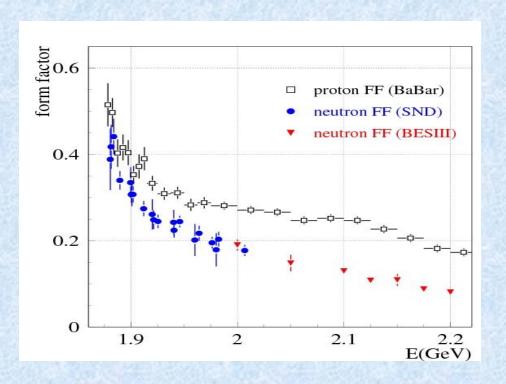
- This process near threshold was previously measured by FENICE and SND using the 2011-2012 dataset.
- The new measurement is based on the 2017, 2019 data (38 pb⁻¹) and uses time measurement in the calorimeter.
- ➤ The time distribution is fitted by a sum of distributions for signal, cosmic background, and beam + e⁺e⁻ annihilation background.
- Our new result is lower than the previous. The main reasons are underestimated beam background and incorrect MC simulation.

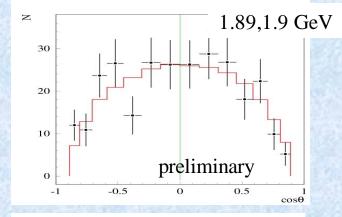
preliminary

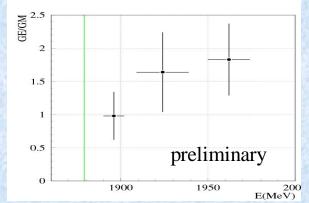
The systematic uncertainty is 10%

preliminary

30.09.2021

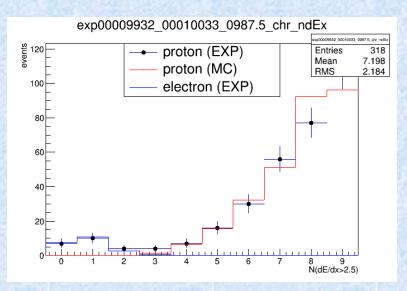

Neutron electromagnetic form factors

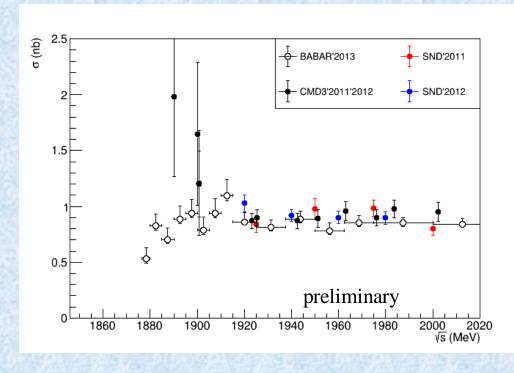

From the measured cross section, we determine effective form factor


$$|F|^2 = \frac{|G_M|^2 + \frac{2m_n^2}{s}|G_E|^2}{1 + \frac{2m_n^2}{s}}$$

$$\sigma(e^{+}e^{-} \to n\bar{n}) = \frac{\alpha^{2}\beta}{4s} \left[|G_{M}|^{2} (1 + \cos^{2}\theta) + \frac{4m_{n}^{2}}{s} |G_{E}|^{2} \sin^{2}\theta \right]$$

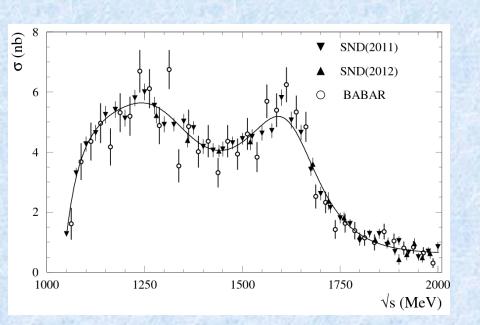
From analysis of the antineutron polar-angle distribution we determine the ratio of the form factors





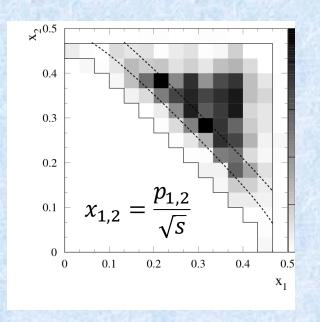
$e^+e^- \rightarrow p\bar{p}$

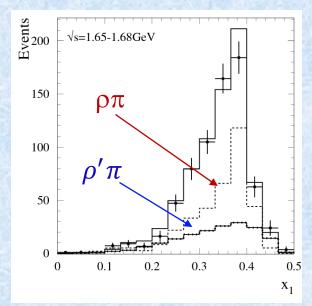
- ➤ This process near threshold was previously measured by BABAR and CMD3.
- ➤ Our measurement is based on the 2011-2012 data and uses energy deposition measurement in the drift chamber.

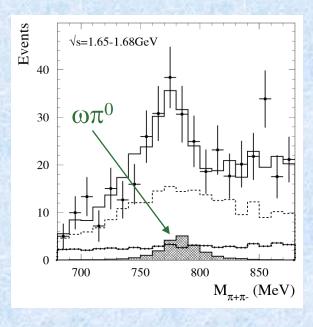


The number of DC layers with dEdx exceeding 2.5*dEdx of the electron

$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ cross section

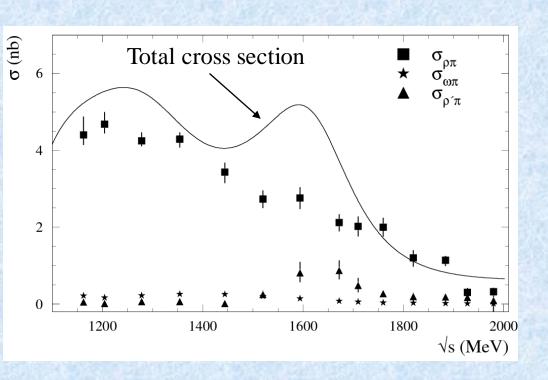





- ✓ Both SND measurements are consistent with each other and with the BABAR measurement.
- ✓ Two peaks in the cross section corresponds to the $\omega' \equiv \omega(1420)$ and $\omega'' \equiv \omega(1650)$ resonances.
- ✓ The systematic uncertainty on the cross section is 4.4%.

The previous SND measurement [J. Exp. Theor. Phys. 121, 27 (2015)] is based on 2011 data set. The 2012 data set has been added.

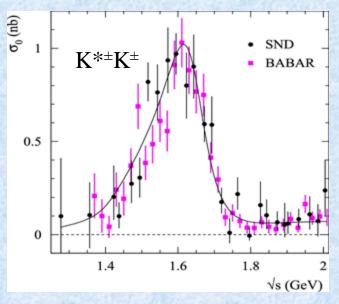
$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

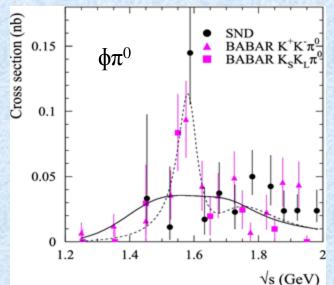


- We analyze the two-dimensional distribution of the charged-pion momenta and the $\pi^+\pi^-$ mass spectrum.
- These distributions are fitted with a model including the $\rho\pi$, $\rho'\pi \equiv \rho(1450)\pi$, and $\omega\pi^0$ states.
- A significant fraction of the $\rho'\pi$ intermediate state is observed in the energy region 1.55-1.75 GeV.

30.09.2021

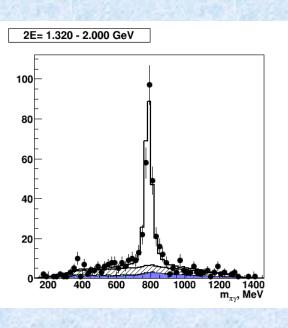
$e^+e^- \rightarrow \pi^+\pi^-\pi^0$ dynamics

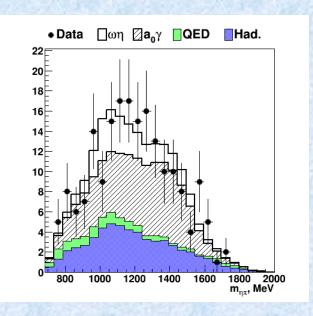

- ✓ The isovector intermediate state $ωπ^0$ gives sizable (up to 20%) contribution to the $e^+e^- → π^+π^-π^0$ cross section.
- The cross section for the intermediate state $\rho'\pi$ differs significantly from zero in the range 1.55 1.75 GeV, where the resonance ω'' is located.
- ✓ In the ρπ cross section the resonance structure near 1650 MeV is not seen.


We conclude that the $\rho'\pi$ intermediate state gives a significant contribution to the decay $\omega'' \to \pi^+\pi^-\pi^0$, and that the $\omega' \to \pi^+\pi^-\pi^0$ decay is dominated by the $\rho\pi$ intermediate state.

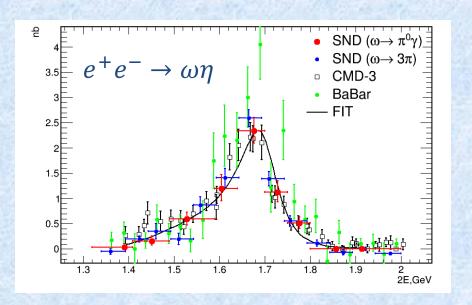
30.09.2021 TAU2021

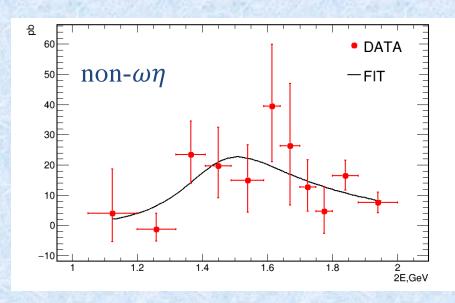
$e^+e^- \rightarrow K^+K^-\pi^0$


EPJ C **80** (2020) 1139



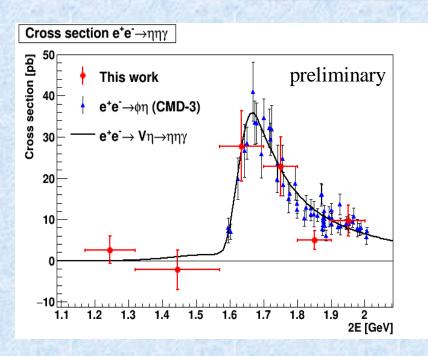
- The analysis is based on 26 pb⁻¹ data recorded in the c.m. energy range 1.27 2 GeV.
- The cross sections for the $K^{*\pm}K^{\mp}$ and $\phi\pi^0$ intermediate states are measured separately.
 - The $e^+e^- \rightarrow K^{*\pm}K^{\mp}$ cross section is dominated by the $\phi' \equiv \phi(1680)$ resonance.


The isovector process $e^+e^- \to \phi\pi^0$ is suppressed by the Okubo-Zweig-Iizuka (OZI) rule. Three measurements of the cross section are fitted simultaneously. The fit by a sum of the ρ ' and ρ '' contributions cannot describe data near 1.6 GeV. The inclusion of an unknown resonance with m=1585±15 MeV and Γ =75±30 MeV improves fit. The significance of the structure is about 3σ .



- ✓ There is a significant contribution of the ωη intermediate state, which is seen as a peak in the $π^0γ$ mass distribution.
- ✓ The non-ωη signal is observed with significance of 5.6σ. It has a wide $\eta \pi^0$ mass distribution and may arise from the processes $e^+e^- \rightarrow a_0(1450)\gamma$ and $a_2(1320)\gamma$.
- The process $e^+e^- \to \eta \pi^0 \gamma$ above 1.05 GeV is studied for the first time.
- Data set with IL \approx 100 pb⁻¹ recorded in 2010-2012 and 2017
- The five-photon final state is used.

$e^+e^- \rightarrow \eta \pi^0 \gamma$

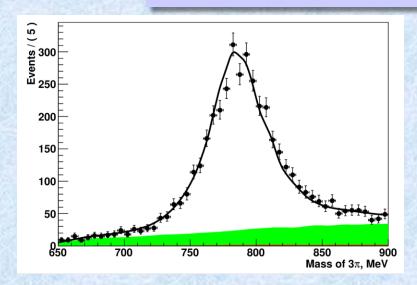


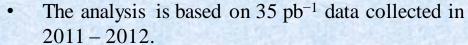
The measured $e^+e^- \rightarrow \omega \eta$ cross section is in good agreement with the SND and CMD-3 measurements in the $\omega \rightarrow \pi^+\pi^-\pi^0$ decay mode.

The non-VP $e^+e^- \rightarrow \eta \pi^0 \gamma$ process is observed with significance of 5.6 σ . This is the first measurement of this cross section.

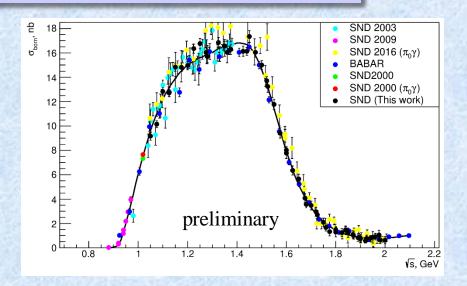
$e^+e^- \rightarrow \eta\eta\gamma$

Upper limits on possible contribution of radiative intermediate states ($f_0(1500)\gamma$, $f'_2(1525)\gamma$) is set.


- The $e^+e^- \rightarrow \eta \eta \gamma$ cross section is measured for the first time in the energy range 1.17 2.0 GeV.
- The main intermediate state is φη.
- The measured cross section is consistent with CMD-3 result on $e^+e^- \rightarrow \phi \eta, \phi \rightarrow K^+K^-$.
- The contribution from intermediate states other than φη is not seen.


preliminary

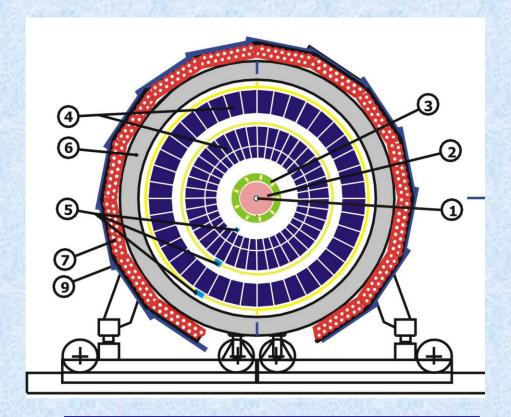
2E, GeV	95% CL Upper limit,pb
1.17-1.32	9
1.32-1.57	5
1.57-1.80	11
1.80-2.00	4


30.09.2021 TAU2021

$e^+e^- \rightarrow \omega\pi^0 \rightarrow \pi^+ \pi^-\pi^0\pi^0$

- The measurement of the $e^+e^- \rightarrow \omega \pi^0$ process is the first step in the study of the $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ reaction.
- Allows to study all sources of systematic uncertainties
- The $\omega \pi^0$ contribution is separated from other intermediate states $(a_1\pi, \rho^+\rho^-, ...)$ by fitting the $\pi^+\pi^-\pi^0$ invariant-mass spectrum in the range 650 900 MeV.

- The $\omega \pi^0$ cross section measured with the restriction $M(3\pi) < 0.9$ GeV is expected to be independent of the model for the ω line shape.
- The measured cross section is in agreement with previous measurements but has better accuracy.
- The cross section is fitted with the VMD model including three ρ-like states


30.09.2021

Summary

- ✓ The SND detector accumulated $370 \,\mathrm{pb^{-1}}$ of integrated luminosity in the energy range $0.3 2 \,\mathrm{GeV}$.
- ✓The $e^+e^- \rightarrow \pi^+\pi^-$ cross section has been measured in the energy range 0.53-0.88 GeV with a systematic uncertainty better than 1%.
- ✓ The accuracy of the $e^+e^- \rightarrow n\bar{n}$ measurement has been significantly improved.
- ✓ The preliminary results on the $e^+e^- \rightarrow p\bar{p}$ cross section has been obtained.
- ✓The dynamics of the process $e^+e^- \to \pi^+\pi^-\pi^0$ has been studied in the energy range 1.15-2.0 GeV.
- ✓The process $e^+e^- \to K^+K^-\pi^0$ has been studied in the $K^{*\pm}K^{\mp}$ and $\phi\pi^0$ intermediate states.
- ✓Rare radiative processes $e^+e^- \rightarrow \eta \pi^0 \gamma$ and $\eta \eta \gamma$ have been measured in the energy range 1.05-2 GeV.
- ✓ The most precise measurement of the $e^+e^- \to \omega \pi^0 \to \pi^+ \pi^- \pi^0 \pi^0$ cross section has been performed.

Backup slides

SND detector

1 – beam pipe, 2 – tracking system, 3 – aerogel Cherenkov counters, 4 - NaI(Tl) crystals, 5 - phototriodes, 6 - iron muon absorber, 7-9 - muon detector, 10 - focusing solenoids.

Calorimeter

Thickness

Acceptance $0.95 \times 4\pi$

Energy resolution $\frac{\sigma_E}{E} = \frac{0.042}{\sqrt[4]{E[GeV]}}$

Angular resolution $\sigma_{\phi,\theta} = \frac{0.82^{\circ}}{\sqrt[4]{E[GeV]}} \oplus 0.63^{\circ}$

Tracking system

Acceptance

 $0.94 \times 4\pi$

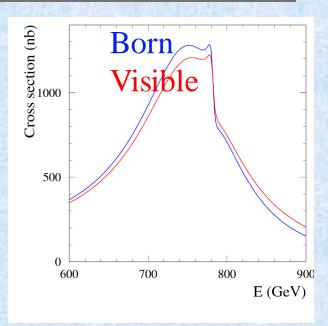
 $13.5 X_0$

(9 layers)

 $\sigma_{\phi} = 0.55^{\circ}$, $\sigma_{\theta} = 1.2^{\circ}$

Angular resolution

Vertex resolution $\sigma_R = 0.12 cm$, $\sigma_Z = 0.45 cm$


Aerogel counters

 K/π separation

E < 1 GeV

Direct scan vs ISR

Energy scan $e^+e^- \rightarrow \pi^+\pi^-$

- ☐ In both methods, the integral equation should be resolved to obtain the Born cross section.
- \Box The function W(x,E) is well known theoretically
 - ☐ The resolution function R(M_m,M_t) is determined using simulation and tested at narrow resonances. The data –MC difference in the tails of the resolution is hard to be tested.

$$\sigma_{vis} = \int_0^{x_m} W(x, E) \sigma_b(\sqrt{E(1-x)} dx)$$

$$\frac{dN}{dM_m} = \int_0^\infty R(M_m, M_t) \frac{dN}{dM_t} dM_t$$

30.09.2021

TAU2021

 $M_{3\pi}$ (GeV/c²)