

Current status and results of the experiments with CMD-3 detector at VEPP-2000

B.Shwartz on behalf of CMD-3 collsboration Budker Institute of Nuclear Physics, Novosibirsk, Novosibirsk State University

First, I would like to to remember and pay tribute to our colleague and friend, Simon Eidelman, passed away this summer, who was very active member of the CMD-2 and CMD-3 collaborations and contributed a lot to the physics results of these experiments. Simon attended many Workshops on Tau Lepton Physics and was a member of IAC for many years.

TAU 2010

Content

- Main goals of experiments
- VEPP 2000 e⁺e⁻ collider and CMD-3 detector
- Precision measurements of $e^+e^- \rightarrow \pi^+\pi^-$ cross section
- Study of the multi-pion processes
- Study of the processes with kaons
- Hadronic cross section near $N\overline{N}$ production threshold
- Conclusion

Motivations for precise hadronic cross section measurements

Tests of perturbative QCD

QCD sum rules, quark masses, quark and gluon condensates

•Higher order QCD corrections - Λ_{QCD} , $\alpha(s)$

•Hadronic corrections to fundamental parameters:

Running fine structure constant - α (M_z²)

Anomalous magnetic moment of the muon

•measurement of parameters of light vector mesons ρ , ω , ϕ , ρ' , ρ'' ,

Search of and study of the exotic resonance states (X, Y, Z, ...)

- Study of the final states dynamics and test of theoretical models
- comparison with spectral functions of the hadronic tau decays via CVC

Study of nucleon-antinucleon pair production – nucleon ectromagnetic form factors, search for NNbar resonances, ..

VEPP-2000 after upgrade (from 2017)

30.09.2021

TAU - 2021

June 2018

/EPP-200

. .

30.09.2021

6

Beam energy measurement

Starting from 2012, energy is monitored continuously using compton backscattering techneques

CMD-3 - detector

Compact multipurpose detector comprising magnetic spectrometry with high resolution calorimetry

> Magnetic field: 1.3T Track reconstruction: $\sigma_{\rho\phi} \approx 100 \ \mu m,$ $\sigma_z \sim 2 - 3 \ mm$ $\sigma_p/p \approx \sqrt{(4.4p[GeV])^2 + 0.62\%}$

Combined EM-calorimeter: Barrel: $5.3 \times_0 LXe + 8.1 \times_0 Csl = 13.5 \times_0$ $\sigma_E / E \approx (3.4 / \sqrt{E[GeV]} \oplus 2)\%$ $\sigma_{\omega} \approx 5 \text{ mrad}$ End caps: BGO (14.4 \times_0)

21 TOF: $\sigma_t \approx 1$ ns

30.09.2021

Integrated luminosity collected at VEPP-2000 collider with CMD-3 detector

30.09.2021

CMD-3 results and analyses ongoing

Published

3(π ⁺ π ⁻)	PLB 723 (2013) 82
e⁺e⁻ → η'(958)	PLB 740 (2015) 273
$p\overline{p}$	PLB 759 (2016) 634
Κ + Κ -π+π-	PLB 756 (2016) 153
K _S K _L	PLB 760 (2016) 314
K+K−	PLB 779 (2018) 64
$\pi^+\pi^-\pi^+\pi^-$	PLB 768 (2017) 345
ωη , π⁺π⁻ π⁰η	PLB 773 (2017) 150
3(π ⁺ π ⁻)π ⁰	PLB 792 (2019) 419
Κ ⁺ Κ ⁻η	PLB 798 (2019) 134946
ηπ+π-	Journal of HEP, 2020, 2020(1), 112

Analyses ongoing $e^+e^- \rightarrow \pi^+\pi^ \pi^+\pi^-\omega$ $e^+e^- \rightarrow D0^*$ $K_{S}K^{+}\pi^{-}$ $2(\pi^+\pi^-)\pi^0$, $2(\pi^+\pi^-\pi^0)$ $\pi^+\pi^-$ η(3π, 2γ) $K^+K^-\omega$, $K^+K^-\eta$ $K^+K^-\pi^0$, $K_SK_I\pi^0$, $K_SK_I\eta$ K⁺K[−], K_SK_I $\pi^+\pi^-\pi^0\pi^0$, 2($\pi^+\pi^-$) $n\overline{n}$ ηγ, π⁰γ, $\omega \rightarrow \pi^0 e^+e^-, \eta e^+e^-$

CMD-3 published results

Muon anomaly, $a_{\mu} = (g-2)_{\mu}/2$: SM calculations and experiment

$$a_{\mu}^{\text{theory(SM)}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$$

$$a_{\mu}^{\text{had}} = \frac{\alpha^{2}}{3 \cdot \pi^{2}} \int_{4m_{\pi}^{2}}^{\infty} ds \cdot \frac{K(s)}{s} \cdot R(s)$$

$$\frac{q_{\text{ED}}}{\sqrt{2} + \sqrt{2} + \sqrt{2}$$

Contribution	Value ×1011	References
QED	116 584 718.931(104)	Refs. [33,34]
Electroweak	153.6(1.0)	Refs. [35,36]
HVP (e+e-, LO + NLO + NNLO)	6845(40)	Refs. [2–8]
HLbL (pheno + lattice + NLO)	92(18)	Refs. [18–32]
Total SM Value Section	116 591 810(43)	Refs. [2–8,18– 24,31–36]
Exp. (E821) - SM	279(76)	

The table is from:

"The anomalous magnetic moment of the muon in the Standard Model", T. Aoyama et al., Physics Reports 887 (2020) 1–166

CMD-3 at VEPP- 2000

Since new experiments at FNAL and JPARC expect to improve the accuracy of muon (g-2) by factor 3, we need in a precision of the hadronic cross section at the level of 0.3%

Fig. from Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281]

31.07.2021

HADRON 2021

R measurement – exclusive vs inclusive

Dominant channel $e^+e^- \rightarrow \pi^+\pi^-$ (below - Φ -meson)

Two charge tracks collinear back-to-back events are selected, $1 \le \theta \le \pi - 1$

Separation of $e^+e^- \rightarrow e^+e^-$, $\pi^+\pi^-$, $\mu^+\mu^-$ cosmic events by two independent approaches: particle momenta and energy deposition in the calorimeter

Binned likelihood minimization:

$$-\ln L = -\sum_{\text{bins}} n_i \ln \left[\sum_{\substack{X=ee,\\\mu\mu,\pi\pi,\\\text{bg}}} N_X f_X(p^+, p^-)\right] + \sum_X N_X$$

30.09.2021

TAU - 2021

The analysis on of this process in the energy range below 1 GeV is at its final stages. Additional local consistency checks should be fulfilled. The aim systematic uncertainty is 0.5 %.

Comparison of the statistical uncertainties

30.09.2021

TAU – 2021

18

Study of the dynamics of multipion (4π) final states

The study of $e^+e^- \rightarrow 4\pi$ at CMD-3 Simultaneous unbinned amplitude analysis of 150 000 $\pi^+\pi^-\pi^0\pi^0$ events and 250 000 $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$ events

Amplitudes accounted for in the likelihood function:

- $\omega[1^{--}]\pi^0[0^{++}]$ (only $\pi^+\pi^-2\pi^0$)
- $a_1(1260)[1^+]\pi[0^-]$
- $\rho[1^{--}]f^0/\sigma[0^{++}]$
- $\rho f_2(1270)[2^{++}]$
- $\rho^{+}\rho^{-}$ (only $\pi^{+}\pi^{-}2\pi^{0}$)
- $h_1(1170)[1^{+-}]\pi^0$ (only $\pi^+\pi^-2\pi^0$)

 $e^+e^- \rightarrow at N\overline{N}$ threshold

 $e^+e^- \rightarrow 3(\pi^+\pi^-)$

Final states with kaons

CMD3(2011)

CMD3(2012)

CMD3(2017)

- CMD3(2019)

CMD3 (WA)

√s, GeV

2

7

²_{n.}, M

Upgrade plans

Z-discs 2 layers of RWELL $\sigma_r \sim 0.6$ mm $\sigma_{r\varphi} \sim 1.2$ mm First disc is ready Read-out electronics is under test. Installation 2023-2024

Z-chamber

2 layers of cyl. RWELL Conceptual design is ready Strip pitch 1.5mm $\sigma_z \sim 0.4$ mm

DC chamber

INFN design mechanics inspired by MEG BINP develop ASIC for cluster counting and wires Work on the prototype probably start in 2022-2023

Conclusion

- The goal of two experiments CMD-3 and SND at VEPP2000 is to provide exclusive measurement of e⁺e⁻ → hadrons reactions with high precision in the energy range 0.32 – 2.0 GeV
- CMD-3 has collected 320 pb⁻¹ in the whole energy range 0.32 2.007 GeV, available at VEPP-2000, and is on the way to 1 fb⁻¹.
- Since At present a discrepancy between experiment and SM in the muon (g-2) is, probably, the largest among observed, the ultimately precise measurements of the hadronic cross section are crucial. Present target of CMD-3 is to achieve the relative systematic precision of 0.5% in $e^+e^- \rightarrow \pi^+\pi^$ below 1 GeV.
- Data analysis of exclusive modes of is in progress. Many results have been published.
- Detector upgrade is under development: the first step is end-cap coordinate system installation in summer of 2023.

Back up

