A dispersive estimate of the $f_0(980)$ contribution to $(g-2)_{\mu}$

Igor Danilkin

in coll. with Oleksandra Deineka, Marc Vanderhaeghen Martin Hoferichter and Peter Stoffer

> Phys. Rev. D 101 5, 054008, (2020) Phys. Rev. D 103 11, 114023, (2021) Phys. Lett. B 820, 136502, (2021)

September 30, 2021

QCD contributions to $(g-2)_{\mu}$

Relies on measurements of **TFF** $\pi^0 \gamma^* \gamma^{(*)}, \eta \gamma^* \gamma^{(*)}, \dots$ to reduce the model dependence

Dispersive analysis for $\pi\pi$, KK, $\pi\eta$, ... loops is needed

Multi-meson production

Important ingredients: $\gamma^* \gamma^* \to \pi \pi, K \overline{K}, ...$ $q^2 = -Q^2 < 0$ space-like γ^*

Right-hand cuts (hadronic input)

$$\begin{pmatrix} \pi\pi \to \pi\pi & \pi\pi \to K\bar{K} \\ K\bar{K} \to \pi\pi & K\bar{K} \to K\bar{K} \end{pmatrix}$$
$$I = 0, J = 0$$

Unitarity relation for the p.w. amplitude
 > guarantees that the p.w. amplitudes behave asymptotically no worse than a constant

Disc
$$t_{ab}(s) = \sum_{c} t_{ac}(s) \rho_{c}(s) t_{cb}^{*}(s)$$

 $-\frac{1}{2\rho_{1}} \leq \operatorname{Re} t_{11}(s) \leq \frac{1}{2\rho_{1}}, \quad 0 < \operatorname{Im} t_{11}(s) \leq \frac{1}{\rho_{1}}$

Based on maximal analyticity principle and in accordance with the unitarity bound we write once subtracted p.w. dispersion relation

...

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Disc } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_c \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$

N/D method

• Once-subtracted p.w. dispersion relation

$$t_{ab}(s) = t_{ab}(0) + \frac{s}{\pi} \int_{-\infty}^{s_L} \frac{ds'}{s'} \frac{\text{Disc } t_{ab}(s')}{s' - s} + \frac{s}{\pi} \sum_c \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}(s') \rho_c(s') t_{cb}^*(s')}{s' - s}$$
$$\underbrace{U_{ab}(s)}$$

can be solved using N/D method with input from $U_{ab}(s)$ above threshold

 $t_{ab}(s) = \sum D_{ac}^{-1}(s) N_{cb}(s)$

Chew, Mandelstam (1960) Luming (1964) Johnson, Warnock (1981)

$$N_{ab}(s) = U_{ab}(s) + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ac}(s') \rho_c(s') (U_{cb}(s') - U_{cb}(s))}{s' - s}$$

$$D_{ab}(s) = \delta_{ab} - \frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{N_{ab}(s') \rho_b(s')}{s' - s} = \Omega_{ab}^{-1}(s)$$
the obtained N/D solution fulfils the p.w. dispersion relation

• Using the known analytical structure of left-hand cuts, one can approximate $U_{ab}(s)$ as an expansion in a **conformal mapping variable** $\xi(s)$ Gasparyan, Lutz (2010)

single-channel $\{\pi\pi\}$

Input: experimental data/Roy analysis + threshold parameters NNLO (a, b) + Adler zero NLO

	Our results		Roy-like analyses	
	pole position, MeV	coupling, GeV	pole position, MeV	coupling, GeV
$\overline{\sigma/f_0(500)}$	$458(7)^{+4}_{-10} - i245(6)^{+7}_{-10}$	$\pi\pi: 3.15(5)^{+0.11}_{-0.20}$	$449_{-16}^{+22} - i275(15)$	$\pi\pi: 3.45^{+0.25}_{-0.29}$
fit to Exp	$435(7)^{+6}_{-8} - i250(5)^{+6}_{-8}$			

Omnes function

Caprini et al. (2006) Garcia-Martin et al. (2011)

 $\Omega(s) = D^{-1}(s)$

single-channel $\{\pi\pi\}$

Input: experimental data/Roy analysis + threshold parameters NNLO (a, b) + Adler zero NLO

	Our results		Roy-like analyses	
	pole position, MeV	coupling, GeV	pole position, MeV	coupling, GeV
$\overline{\sigma/f_0(500)}$	$458(7)^{+4}_{-10} - i245(6)^{+7}_{-10}$	$\pi\pi: 3.15(5)^{+0.11}_{-0.20}$	$449_{-16}^{+22} - i275(15)$	$\pi\pi: 3.45^{+0.25}_{-0.29}$
fit to Exp	$435(7)^{+6}_{-8} - i250(5)^{+6}_{-8}$			

Omnes function

$$\Omega(s) = D^{-1}(s) = \exp\left(\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta(s')}{s'-s}\right)$$

Caprini et al. (2006) Garcia-Martin et al. (2011)

Pelaez et al. (2010)

• Similar results for single-channel $\pi\pi$ phase-shift and Omnes function can obtained by using mIAM with the ChPT input for the left-hand cuts and subtraction constants Gomez Nicola et al. (2008), Hanhart et al. (2008), Nebreda et al. (2010)

coupled-channel { $\pi\pi$, KK}

Input: experimental data/Roy analysis + threshold parameters NNLO (a, b) + Adler zero NLO

$$t_{ab}(s) = \begin{pmatrix} \frac{\eta(s) e^{2i\delta_1(s)} - 1}{2i\rho_1(s)} & |t_{12}(s)| e^{\delta_{12}(s)} \\ |t_{12}(s)| e^{\delta_{12}(s)} & \frac{\eta(s) e^{2i\delta_2(s)} - 1}{2i\rho_2(s)} \end{pmatrix}_{ab}$$
$$\eta(s) = \sqrt{1 - 4\rho_1(s)\rho_2(s) |t_{12}(s)|^2}$$
$$\delta_{12}(s) = \delta_1(s) + \delta_2(s) \theta(s > 4m_K^2)$$

In the **two-channel approximation** one needs to make the choice of which experimental data/Roy analysis include in the fit

coupled-channel { $\pi\pi$, KK}

Input: experimental data/Roy analysis + threshold parameters NNLO (a, b) + Adler zero NLO

	Our results		Roy-like analyses	
	pole position, MeV	couplings, GeV	pole position, MeV	couplings, GeV
$\sigma/f_0(500)$	$458(10)^{+7}_{-15} - i256(9)^{+5}_{-8}$	$\pi\pi : 3.33(8)^{+0.12}_{-0.20}$ $K\bar{K} : 2.11(17)^{+0.27}_{-0.11}$	$449_{-16}^{+22} - i275(15)$	$\pi\pi : 3.45^{+0.25}_{-0.29}$ $K\bar{K} : -$
fit to Exp	$454(12)^{+6}_{-7} - i262(12)^{+8}_{-12}$			
$f_0(980)$	$993(2)_{-1}^{+2} - i21(3)_{-4}^{+2}$	$\pi\pi : 1.93(15)^{+0.07}_{-0.12}$ $K\bar{K} : 5.31(24)^{+0.04}_{-0.24}$	$996^{+7}_{-14} - i25^{+11}_{-6}$	$\pi\pi:2.3(2)$ $Kar{K}:-$
fit to Exp	$990(7)^{+2}_{-4} - i17(7)^{+4}_{-1}$			
			Caprini et al. (2006) Carcia Martin et al. (2011)	

Garcia-Martin et al. (2011) Moussallam (2011)

Omnes function $\{\pi\pi, KK\}$

Omnes function fulfils the unitarity relation on the right-hand cut and analytic everywhere else. For the case of no bound states or CDD poles:

$$\Omega_{ab}(s) = D_{ab}^{-1}(s)$$

which automatically satisfies a once-subtracted dispersion relation (i.e. $\Omega(s)$ is asymptotically bounded)

$$\Omega_{ab}(s) = \delta_{ab} + \frac{s}{\pi} \sum_{c} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{t_{ac}^*(s') \rho_c(s') \Omega_{cb}(s')}{s' - s} \qquad \begin{array}{l} \text{different from} \\ \text{Donoghue et al. (1990)} \\ \text{Moussallam (2000)} \end{array}$$

Left-hand cuts (pion/kaon pole)

11

Left-hand cuts (vector poles)

12

• Left-hand cuts: "anomalous thresholds" for large virtualities $Q_1^2 Q_2^2 > (M_V^2 - m_\pi^2)^2$

Hoferichter, Stoffer (2019) I.D., Deineka, Vanderhaeghen (2019)

Kinematic constraints

• p.w. helicity amplitudes suffer from kinematic constraints

$$h_{\lambda_1\lambda_2}^{(J)} = \int \frac{d\cos\theta}{2} \, d_{\lambda_1-\lambda_2,0}^J(\theta) \, H_{\lambda_1\lambda_2}$$

• Helicity amplitudes

$$H_{\lambda_1,\lambda_2} = \epsilon_{\mu}(\lambda_1)\epsilon_{\nu}(\lambda_2) \sum_{n=1}^{5} \overbrace{F_n(s,t) L_n^{\mu\nu}}^{II}$$

Bardeen et al. (1968), Tarrach (1975) Metz et al. (1998), Colangelo et al. (2015)

• Unconstrained basis for Born subtracted p.w. amplitudes $\bar{h}_i^{(J)} \equiv h_i^{(J)} - h_i^{(J),Born}$ For S-wave

$$\bar{h}_{++}^{(0)} \pm \bar{h}_{00}^{(0)} \sim (s - s_{\rm kin}^{(\mp)}), \quad s_{\rm kin}^{(\pm)} \equiv -(Q_1 \pm Q_2)^2$$
$$\bar{h}_{i=1,2}^{(0)}(s) = \frac{\bar{h}_{++}^{(0)}(s) \pm \bar{h}_{00}^{(0)}(s)}{s - s_{\rm kin}^{(\mp)}}$$
Colangelo et al.

 $H^{\mu
u}$

Colangelo et al. (2017) Hoferichter, Stoffer (2019) I.D., Deineka, Vanderhaeghen (2019)

For D-wave

$$\bar{h}_i^{(J)} = K_{ij} \bar{h}_j^{(J)}$$
 $j \equiv \lambda_1 \lambda_2 = \{++, +-, +0, 0+, 00\}$

 K_{ij} is 5×5 matrix

Dispersion relation

• <u>Unsubtracted</u> dispersion relation for kinematically unconstrained p.w. amplitudes

$$\bar{h}_{i}^{(J)} = \int_{-\infty}^{0} \frac{ds'}{\pi} \frac{\text{Disc}\,\bar{h}_{i}^{(J)}(s')}{s'-s} + \int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{\pi} \frac{\text{Disc}\,\bar{h}_{i}^{(J)}(s')}{s'-s}$$
$$\bar{h}_{i}^{(J)} \equiv h_{i}^{(J)} - h_{i}^{(J),\text{Born}}$$

Moussallam (2013)

which can be solved using modified MO method, i.e. by writing a dispersion relation for $\Omega^{(J)}(s)^{-1} \bar{h}_i^{(J)}(s)$

• For S-wave, I=0

$\gamma\gamma \rightarrow \pi\pi$ (postdiction)

• This approximation can be systematically improved by adding vector-meson exchange left-hand cuts at the cost of extra subtraction when BESIII data on $\gamma\gamma^* \rightarrow \pi\pi$ will be available

Important ingredients: $\gamma^* \gamma^* \to \pi \pi, K \overline{K}, ...$ $q^2 = -Q^2 < 0$ space-like γ^*

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^1 d\tau \sqrt{1 - \tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, Q_3) \,\bar{\Pi}_i(Q_1, Q_2, Q_3),$$
Colangelo et al. (2014-2017)
$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i \qquad \bar{\Pi}_i \text{ linear combination of } \Pi_i$$

Important ingredients: $\gamma^* \gamma^* \to \pi \pi, K \overline{K}, ...$ $q^2 = -Q^2 < 0$ space-like γ^*

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{3\pi^2} \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \sqrt{1-\tau^2} Q_1^3 Q_2^3 \sum_{i=1}^{12} T_i(Q_1, Q_2, Q_3) \,\bar{\Pi}_i(Q_1, Q_2, Q_3),$$

Rescattering contribution ($\bar{h} \equiv h - h^{Born}$) in the S-wave

$$\bar{\Pi}_{3}^{J=0} = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \Big(4s' \operatorname{Im}\bar{h}_{++,++}^{(0)}(s') - (s'-Q_{1}^{2}+Q_{2}^{2})(s'+Q_{1}^{2}-Q_{2}^{2}) \operatorname{Im}\bar{h}_{00,++}^{(0)}(s') \Big) \\ \bar{\Pi}_{9}^{J=0} = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{4}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \Big(2\operatorname{Im}\bar{h}_{++,++}^{(0)}(s') - (s'+Q_{1}^{2}+Q_{2}^{2}) \operatorname{Im}\bar{h}_{00,++}^{(0)}(s') \Big) + \text{crossed} + \text{crossed}$$

Rescattering contribution ($\bar{h} \equiv h - h^{Born}$) in the S-wave

$$\bar{\Pi}_{3}^{J=0} = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{-2}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \Big(4s' \operatorname{Im}\bar{h}_{++,++}^{(0)}(s') - (s'-Q_{1}^{2}+Q_{2}^{2})(s'+Q_{1}^{2}-Q_{2}^{2}) \operatorname{Im}\bar{h}_{00,++}^{(0)}(s') \Big) \\ \bar{\Pi}_{9}^{J=0} = \frac{1}{\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{4}{\lambda_{12}(s')(s'+Q_{3}^{2})^{2}} \Big(2\operatorname{Im}\bar{h}_{++,++}^{(0)}(s') - (s'+Q_{1}^{2}+Q_{2}^{2}) \operatorname{Im}\bar{h}_{00,++}^{(0)}(s') \Big) + \text{crossed} + \text{crossed}$$

Important ingredients: $\gamma^* \gamma^* \to \pi \pi, K \overline{K}, ...$ $q^2 = -Q^2 < 0$ space-like γ^*

• Using S-wave elastic helicity amplitudes on $\gamma^* \gamma^* \rightarrow \pi \pi$, f₀(500) contribution was calculated previously

$$a_{\mu}^{\text{HLbL}}$$
[S-wave, $I = 0$]_{rescattering} = $-9.3(1) \times 10^{-11}$

Colangelo et al. (2014-2017)

• Extending to KK channel allowed us to access energies up to $\sim 1.2 \text{ GeV} (f_0(500) + f_0(980) \text{ contributions})$

$$a_{\mu}^{\text{HLbL}}$$
[S-wave, $I = 0$]_{rescattering} = $-9.8(1) \times 10^{-11}$

What is the contribution just from $f_0(980)$?

• One can define it as an integral over the deficit in shape

Summary and outlook

- Presented a dispersive data driven analysis of the coupled-channel I=0 { $\pi\pi$,KK} contribution to (g-2)
 - > Main ingredient is a coupled-channel { $\pi\pi$, KK} Omnes matrix
 - > The input from $\gamma\gamma^* \rightarrow \pi\pi$,KK can be systematically improved once BESIII data will be available
- As a next step, we plan to perform a similar dispersive analysis for the coupled-channel I=1 { $\pi\eta$,KK} contribution to (g-2)
 - > Narrow width approximation gives $a_{\mu}^{\text{HLbL}}[a_0(980)]_{\text{NWA}} = -([0.3, 0.6]^{+0.2}_{-0.1}) \times 10^{-11}$

• Also, one can calculate D-wave contribution dispersively from $\pi\pi$ rescattering (f₂(1270)) and compare the result with the narrow width approximation (need to be careful with ambiguities due to choice of the basis and sum rule violations)

Results for $\pi\pi$

I.D., Vanderhaeghen (2018) Hoferichter, Stoffer (2019)

Results for $\pi\pi$

 $\frac{d\sigma_{TT}}{d\cos\theta} \sim |H_{++}|^2 + |H_{+-}|^2, \quad \frac{d\sigma_{TL}}{d\cos\theta} \sim |H_{+0}|^2, \quad \frac{d\sigma_{LL}}{d\cos\theta} \sim |H_{00}|^2$

Hoferichter, Stoffer (2019) I.D., Deineka, Vanderhaeghen (2019)