The pseudoscalar poles contributions to $(g - 2)_{\mu}$ based on P. Masjuan, PS: Phys.Rev. D95 (2017)

The pseudoscalar poles contributions to $(g-2)_{\mu}$

Outline

- 1. Pseudoscalar poles contribution to $\textit{a}_{\mu}^{\rm HLbL}$: the essentials
- 2. Describing the pseudoscalar form factors: Padé approximants
- 3. Application to HLbL: results
- 4. Summary

Section 1

Pseudoscalar poles contribution to a_{μ}^{HLbL} : the essentials

___ The pseudoscalar poles in brief

• We want the pseudoscalar (π^0,η,η') pole contributions to $a_\mu^{
m HLbL}$

unambiguosly identified (see G. Colangelo's talk)

___ The pseudoscalar poles in brief

• Plugging it into the a_{μ}^{HLbL} contribution

___ The pseudoscalar poles in brief

• Plugging it into the a_{μ}^{HLbL} contribution

• Result as weighted integral over spacelike form factors [Phys.Rept., 477 (2009)]

$$\begin{aligned} \mathsf{a}_{\ell}^{\mathrm{HLbL};P} &= \frac{-2\pi}{3} \left(\frac{\alpha}{\pi}\right)^3 \int_0^\infty dQ_1 dQ_2 \int_{-1}^{+1} dt \sqrt{1-t^2} Q_1^3 Q_2^3 \\ &\times \left[\frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_3^2) F_{P\gamma^*\gamma}(Q_2^2, 0) h(Q_1, Q_2, t)}{Q_2^2 + m_P^2} + \frac{F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2) F_{P\gamma^*\gamma}(Q_3^2, 0) h(Q_1, Q_2, t)}{Q_3^2 + m_P^2}\right] \end{aligned}$$

____ The pseudoscalar poles in brief

• Plugging it into the a_{μ}^{HLbL} contribution

• Result as weighted integral over spacelike form factors [Phys.Rept., 477 (2009)]

notice the peaks at the relevant low energies

___ The pseudoscalar poles in brief _

• Plugging it into the a_{μ}^{HLbL} contribution

• Solved if form factor known precisely at Q^2 and HE extrapolation appropriate

. Whitepaper criteria [Phys.Rept. 887 (2020) 1-166] _

- In addition to the normalization [...], also HE constraints must be fulfilled
- At least the SL data [...] must be reproduced
- Systematic uncertainties must be assessed [...]

 \Rightarrow Padé approximants, Dispersion relations, Lattice QCD

Here I will focus on Padé approximants

Section 2

Describing the pseudoscalar form factors: Padé approximants

___ Padé approximants: the philosophy __

—The challenge—

Get a description for the SL TFF

-The philosophy-

Nature has solved QCD: make use of data

—The problem—

Inter(extra)polate the data in the SL region while (WP criteria):

- Incorporating QCD constraints
- Assessing systematics from procedure

—Our proposal—

Padé & Canterbury approximants: not a model but a mathematical toolkit

___ Padé approximants: singly virtual ____

• How to approximate (not model) non-perturbative hadronic functions?

Taylor series: $F_{\pi\gamma\gamma^*}(q^2) = F_{\pi\gamma\gamma}(1 + b_P q^2 + ...)$ X poles(cuts)

___ Padé approximants: singly virtual _____

• How to approximate (not model) non-perturbative hadronic functions?

Laurent exp.:
$$F_{\pi\gamma\gamma^*}(q^2) = \sum_{n=-1} c_n (q^2 - M^2)^n$$
 X next pole(cuts)

___ Padé approximants: singly virtual _____

• How to approximate (not model) non-perturbative hadronic functions?

PAs:
$$F_{\pi\gamma\gamma^*}(q^2) = P_M^N = \frac{Q_N(q^2)}{R_M(q^2)} = F_{\pi\gamma\gamma}(1 + b_P q^2 + ... + \mathcal{O}(q^{N+M+1}))$$

___ Padé approximants: singly virtual ___

• How to approximate (not model) non-perturbative hadronic functions?

PAs:
$$F_{\pi\gamma\gamma^*}(q^2) = P_M^N = \frac{Q_N(q^2)}{R_M(q^2)} = F_{\pi\gamma\gamma}(1 + b_P q^2 + ... + \mathcal{O}(q^{N+M+1}))$$

• Convergence to meromorphic and Stieltjes in the SL \Rightarrow beyond large- N_c Convergence applies to sequences: $P_1^N, P_N^N, P_{N+1}^N, ...$

Sequence convergence: model-independence and systematics

___ Padé approximants: singly virtual __

• How to approximate (not model) non-perturbative hadronic functions?

PAs:
$$F_{\pi\gamma\gamma^*}(q^2) = P_M^N = \frac{Q_N(q^2)}{R_M(q^2)} = F_{\pi\gamma\gamma}(1 + b_P q^2 + ... + \mathcal{O}(q^{N+M+1}))$$

• Convergence to meromorphic and Stieltjes in the SL \Rightarrow beyond large- N_c Convergence applies to sequences: $P_1^N, P_N^N, P_{N+1}^N, ...$

Sequence convergence: model-independence and systematics

• Mixed $q^2=0$ and $q^2=\infty$ expansions if required ightarrow pQCD constraints

$$P_1^0(q^2) = rac{F_{P\gamma\gamma^*}(0)}{1 - b_P Q^2} = F_{P\gamma\gamma^*}(0)(1 + b_P Q^2 + \mathcal{O}(q^4)), \quad b_P
eq M_V^{-2}!!!$$

Can incorporate relevant QCD constraints; $q^2 = 0$ relevant for $a_{\mu}^{
m HLbL}$

___ Padé approximants: singly virtual ___

• How to approximate (not model) non-perturbative hadronic functions?

PAs:
$$F_{\pi\gamma\gamma^*}(q^2) = P_M^N = \frac{Q_N(q^2)}{R_M(q^2)} = F_{\pi\gamma\gamma}(1 + b_P q^2 + ... + \mathcal{O}(q^{N+M+1}))$$

• Convergence to meromorphic and Stieltjes in the SL \Rightarrow beyond large- N_c Convergence applies to sequences: $P_1^N, P_N^N, P_{N+1}^N, ...$

Sequence convergence: model-independence and systematics

• Mixed $q^2=0$ and $q^2=\infty$ expansions if required ightarrow pQCD constraints

$${\cal P}_1^0(q^2)=rac{F_{P\gamma\gamma^*}(0)}{1-b_PQ^2}=F_{P\gamma\gamma^*}(0)(1+b_PQ^2+{\cal O}(q^4)), \quad b_P
eq M_V^{-2}!!!$$

Can incorporate relevant QCD constraints; $q^2=0$ relevant for $a_{\mu}^{
m HLbL}$

• Obtain the derivatives from data (nor spectroscopy nor direct fitting!!!)

_ Inputs from data, PAs from derivatives

• Inputs: sequences data fitting (not just fitting models)

___ Inputs from data, PAs from derivatives

• Inputs: sequences data fitting (not just fitting models)

$$\begin{array}{lll} \mbox{Reduced} & P_{N+1}^{N}: & P_{1}^{0; {\rm fit}} \rightarrow b_{P} \ , \ \ldots \ , \ P_{2}^{1; {\rm fit}} \not X \\ \mbox{Data Set} & P_{1}^{N}: & P_{1}^{0; {\rm fit}} \rightarrow b_{P} \ , \ \ldots \ , \ P_{1}^{4; {\rm fit}} \rightarrow _{c_{P}}^{b_{P}} \ , \ P_{1}^{5; {\rm fit}} \not X \\ \end{array}$$

• Let's see impact on $a_{\mu}^{\mathrm{HLbL};\eta}$ assuming $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2) = F_{P\gamma\gamma^*}(q_1^2)F_{P\gamma\gamma^*}(q_2^2)$

	Fit	
P_1^0	14.5	
P_2^1	—	

1

__ Inputs from data, PAs from derivatives _

• Inputs: sequences data fitting (not just fitting models)

• Let's see impact on $a_{\mu}^{\mathrm{HLbL};\eta}$ assuming $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{P\gamma\gamma^*}(q_1^2)F_{P\gamma\gamma^*}(q_2^2)$

	Fit	Der	
P_1^0	14.5	13.2	
P_2^1		13.3	

__ Inputs from data, PAs from derivatives _

• Inputs: sequences data fitting (not just fitting models)

• Let's see impact on $a_{\mu}^{\mathrm{HLbL};\eta}$ assuming $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{P\gamma\gamma^*}(q_1^2)F_{P\gamma\gamma^*}(q_2^2)$

	Fit	Der	New Fit	
P_1^0	14.5	13.2	14.0	
P_2^1	—	13.3	13.4	

__ Inputs from data, PAs from derivatives _

• Inputs: sequences data fitting (not just fitting models)

New larger
$$P_{N+1}^{N}$$
: $P_{1}^{0; der} \rightarrow b_{P}$, ..., $P_{2}^{1; der}$
Data Set P_{1}^{N} : $P_{1}^{0; fit} \rightarrow b_{P}$, ..., $P_{1}^{7; fit} \rightarrow b_{P}^{b_{P}}$, $P_{1}^{3; fit} \boldsymbol{X}$

• Let's see impact on $a_{\mu}^{\mathrm{HLbL};\eta}$ assuming $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{P\gamma\gamma^*}(q_1^2)F_{P\gamma\gamma^*}(q_2^2)$

	Fit	Der	New Fit	New Der
P_{1}^{0}	14.5	13.2	14.0	13.1
P_2^1	—	13.3	13.4	13.3

___ Inputs from data, PAs from derivatives _

• Inputs: sequences data fitting (not just fitting models)

• Let's see impact on $a_{\mu}^{\mathrm{HLbL};\eta}$ assuming $F_{P\gamma^*\gamma^*}(q_1^2,q_2^2) = F_{P\gamma\gamma^*}(q_1^2)F_{P\gamma\gamma^*}(q_2^2)$

	Fit	Der	New Fit	New Der
P_1^0	14.5	13.2	14.0	13.1
P_2^1	—	13.3	13.4	13.3

• Advantage of PAs: interrelation, acceleration of convergence, systematics

Cannot overmphasize: not directly fitting functions, nor spectroscopy!!!
 P. Masjuan '12; R. Escribano, P. Masjuan, P. S (& S. Gonzalez) '14 '15 (&16)

___ Padé approximants: doubly virtual _____

• Commonly referred to as Canterbury approximants

$$\begin{split} F_{\pi\gamma^*\gamma^*}(q_1^2, q_2^2) &= C_M^N = \frac{Q_N(q_1^2, q_2^2)}{R_M(q_1^2, q_2^2)}; \quad Q_N(R_M) = \sum_{i,j}^{N(M)} c_{n,m}^{Q(R)} q_1^{2i} q_2^{2j} \\ Again, \text{ match derivatives to get } c_{ii}^{Q,R} \text{'s} \end{split}$$

___ Padé approximants: doubly virtual _____

• Commonly referred to as Canterbury approximants

$$F_{\pi\gamma^*\gamma^*}(q_1^2, q_2^2) = C_M^N = \frac{Q_N(q_1^2, q_2^2)}{R_M(q_1^2, q_2^2)}; \quad Q_N(R_M) = \sum_{i,j}^{N(M)} c_{n,m}^{Q(R)} q_1^{2i} q_2^{2j}$$
Again, match derivatives to get $c_{ii}^{Q,R}$'s

• Again nice convergence properties, as for instance, pQCD models

___ Padé approximants: doubly virtual _____

• Commonly referred to as Canterbury approximants

$$F_{\pi\gamma^*\gamma^*}(q_1^2, q_2^2) = C_M^N = rac{Q_N(q_1^2, q_2^2)}{R_M(q_1^2, q_2^2)}; \quad Q_N(R_M) = \sum_{i,j}^{N(M)} c_{n,m}^{Q(R)} q_1^{2i} q_2^{2j}$$

Again, match derivatives to get $c_{ij}^{Q,R}$'s

• Again nice convergence properties, as for instance, pQCD models

$$F^{\log}_{P\gamma^*\gamma^*}(Q_1^2,Q_2^2) = \frac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(\frac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}\right)$$

___ Padé approximants: doubly virtual _____

• Commonly referred to as Canterbury approximants

$$egin{aligned} F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2) &= C_M^N = rac{Q_N(q_1^2,q_2^2)}{R_M(q_1^2,q_2^2)}; & Q_N(R_M) = \sum_{i,j}^{N(M)} c_{n,m}^{Q(R)} q_1^{2i} q_2^{2j} \ Again, ext{ match derivatives to get } c_{ij}^{Q,R} \, 's \end{aligned}$$

• Again nice convergence properties, as for instance, pQCD models

$$F_{P\gamma^*\gamma^*}^{\log}(Q_1^2, Q_2^2) = F_{P\gamma\gamma} M^2 \int_0^1 dx rac{1}{xQ_1^2 + (1-x)Q_2^2 + M^2}$$

___ Padé approximants: doubly virtual _____

• Commonly referred to as Canterbury approximants

$$egin{aligned} F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2) &= C_M^N = rac{Q_N(q_1^2,q_2^2)}{R_M(q_1^2,q_2^2)}; & Q_N(R_M) = \sum_{i,j}^{N(M)} c_{n,m}^{Q(R)} q_1^{2i} q_2^{2j} \ Again, ext{ match derivatives to get } c_{ij}^{Q,R} \, 's \end{aligned}$$

• Again nice convergence properties, as for instance, pQCD models

$$F_{P\gamma^*\gamma^*}^{\log}(Q_1^2, Q_2^2) = F_{P\gamma\gamma} M^2 \int_0^1 dx rac{1}{xQ_1^2 + (1-x)Q_2^2 + M^2}$$

• Simple example with appropriate power-like behavior

$$C_1^0 = \frac{1}{1 + c_{0,1}^R(q_1^2 + q_2^2) + c_{1,1}^R q_1^2 q_2^2} \to \frac{1}{1 + c_{0,1}^R(q_1^2 + q_2^2)}$$
Again, benefits of not doing spectroscopy!

• Unfortunately not available data yet (except for η' ; expected for π^0)

See to believe: toy models and systematics

 $-a_{\mu}^{\pi}$: Regge Model-

$$\mathcal{F}^{\text{Regge}}_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) = \frac{aF_{P\gamma\gamma}}{Q_{1}^{2}-Q_{2}^{2}} \frac{\left[\psi^{(0)}\left(\frac{M^{2}+Q_{1}^{2}}{a}\right) - \psi^{(0)}\left(\frac{M^{2}+Q_{2}^{2}}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^{2}}{a}\right)}$$

 $-a_{\mu}^{\pi}$: Logarithmic Model-

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	55.2	59.7	60.4	60.6
OPE	65.7	60.8	60.7	60.7
Fit ^{OPE}	66.3	62.7	61.1	60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE OPE Fit ^{OPE}	56.7 65.7 79.6	64.4 67.3 71.9	66.1 67.5 69.3	66.8 67.6 68.4
Exact		67	7.6	

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

See to believe: toy models and systematics

 $-a_{\mu}^{\pi}$: Regge Model-

$$F_{\pi^0\gamma^*\gamma^*}^{\text{Regge}}(Q_1^2, Q_2^2) = \frac{aF_{P\gamma\gamma}}{Q_1^2 - Q_2^2} \frac{\left[\psi^{(0)}\left(\frac{M^2 + Q_1^2}{a}\right) - \psi^{(0)}\left(\frac{M^2 + Q_2^2}{a}\right)\right]}{\psi^{(1)}\left(\frac{M^2}{a}\right)}$$

 $-a_{\mu}^{\pi}$: Logarithmic Model-

$$F^{\log}_{\pi^0\gamma^*\gamma^*}(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}M^2}{Q_1^2 - Q_2^2} \ln\left(rac{1 + Q_1^2/M^2}{1 + Q_2^2/M^2}
ight)$$

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE OPE Fit ^{OPE}	55.2 65.7 66.3	59.7 60.8 62.7	60.4 60.7 61.1	60.6 60.7 60.8
Exact		60.7		

	C_{1}^{0}	C_2^1	C_{3}^{2}	C_4^3
LE	56.7	64.4	66.1	66.8
OPE	65.7	67.3	67.5	67.6
Fit ^{OPE}	79.6	71.9	69.3	68.4
Exact		67	.6	

- The convergence result is excellent!
- The OPE choice seems the best \rightarrow high energy matters
- Still, low energies provide a good performance
- Error \sim difference among elements \rightarrow Systematics!

P. Masjuan & P. Sanchez Phys.Rev. D95, 054026 (2017)

Section 3

Application to HLbL and results

_ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ _

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

 $_$ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ $_$

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$

_ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ _

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$

Reconstruction .

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

_ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ _

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$

Reconstruction .

1. Reduce to Padé Approximants $F_{P\gamma\gamma}(0,0), \alpha_1, \beta_1, \beta_2 \rightarrow \text{from PAs}$

$_$ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ $_$

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

$$C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2,2}Q_{1}^{4}Q_{2}^{4}}$$

Reconstruction _____

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)

$$F_{\pi\gamma^*\gamma^*} = \frac{1}{3Q^2} (2F_{\pi}) \left(1 - \frac{8}{9} \frac{\delta^2}{Q^2} + \mathcal{O}(\alpha_s(Q^2)) \right) \Rightarrow \beta_{2,2} = 0, \alpha_{1,1}, \beta_{2,1}$$

$_$ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ $_$

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$ Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

3. Reproduce the low energies $(a_{P;1,1})$

_ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ _

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2},Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0,0)(1+\alpha_{1}(Q_{1}^{2}+Q_{2}^{2})+\alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1+\beta_{1}(Q_{1}^{2}+Q_{2}^{2})+\beta_{2}(Q_{1}^{4}+Q_{2}^{4})+\beta_{1,1}Q_{1}^{2}Q_{2}^{2}+\beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2}+Q_{2}^{2})}$ Reconstruction

Reconstruction _

- 1.Reduce to Padé Approximants
- 2.Reproduce the OPE behavior (high energies)
- 3.Reproduce the low energies $(a_{P;1,1})$

Be generous: all configurations with no poles $\Rightarrow a_{P:1,1}^{\min} < a_{P:1,1} < a_{P:1,1}^{\max}$

_ Reconstructing $F_{P\gamma^*\gamma^*}(Q_1^2, Q_2^2)$ _

• Simplest approach: $C_1^0(Q_1^2, Q_2^2)$

$$C_1^0(Q_1^2,Q_2^2) = rac{F_{P\gamma\gamma}(0,0)}{1+b_P(Q_1^2+Q_2^2)}$$

• Next element: $C_2^1(Q_1^2, Q_2^2)$

 $C_{2}^{1}(Q_{1}^{2}, Q_{2}^{2}) = \frac{F_{P\gamma\gamma}(0, 0)(1 + \alpha_{1}(Q_{1}^{2} + Q_{2}^{2}) + \alpha_{1,1}Q_{1}^{2}Q_{2}^{2})}{1 + \beta_{1}(Q_{1}^{2} + Q_{2}^{2}) + \beta_{2}(Q_{1}^{4} + Q_{2}^{4}) + \beta_{1,1}Q_{1}^{2}Q_{2}^{2} + \beta_{2,1}Q_{1}^{2}Q_{2}^{2}(Q_{1}^{2} + Q_{2}^{2})}$ Reconstruction

1.Reduce to Padé Approximants

2.Reproduce the OPE behavior (high energies)

3. Reproduce the low energies $(a_{P;1,1}^{\min} < a_{P;1,1} < a_{P;1,1}^{\max})$

_ Pseudoscalar-pole contribution: Final results

$-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\;(a_{P;1,1}=b_P^2)$
π^{0} η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

_ Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\;(a_{P;1,1}=b_P^2)$
π^{0} η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_\pi}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_\eta}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

 $-C_2^1(Q_1^2, Q_2^2)-$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t$	$16.2(0.8)_L(0.6)_\delta[1.0]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	$95.1[1.7]_t$	93.5[1.7] _t

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

_ Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$OPE(a_{P;1,1} = 2b_P^2)$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$
π^0	$65.3(1.4)_F(2.4)_{b_{\pi}}[2.8]_t$	$54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t$
η	$17.1(0.6)_F(0.2)_{b_{\eta}}[0.6]_t$	$13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t$
η'	$16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t$	$12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t$
Total	$98.4[2.9]_t$	79.3[2.6] _t

 $-C_2^1(Q_1^2, Q_2^2)-$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t\{2.3\}_{sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t$
Total	$95.1[1.7]_t$	$93.5[1.7]_t$

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

_ Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\; \left(a_{P;1,1} = b_P^2 \right)$
π^{0} η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

 $-C_2^1(Q_1^2, Q_2^2)-$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π^0	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_\delta[1.2]_t\{2.3\}_{\rm sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

_ Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\; \big(a_{P;1,1} = b_P^2 \big)$
π^{0} η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

 $-C_2^1(Q_1^2, Q_2^2)-$

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π ⁰	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t\{2.3\}_{sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t\{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

-Final Result (combining errors just for clarity)

$$a_{\mu}^{\pi,\eta,\eta'}=(63.6(2.7)+16.3(1.3)+14.5(1.8)) imes10^{-11}=94.3(5.3) imes10^{-11}$$

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

_ Pseudoscalar-pole contribution: Final results

 $-C_1^0(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	OPE $(a_{P;1,1} = 2b_P^2)$	$Fact\; \big(a_{P;1,1} = b_P^2\big)$
π^{0} η η'	$\begin{array}{c} 65.3(1.4)_F(2.4)_{b_\pi}[2.8]_t\\ 17.1(0.6)_F(0.2)_{b_\eta}[0.6]_t\\ 16.0(0.5)_F(0.3)_{b_{\eta'}}[0.6]_t\end{array}$	$\begin{array}{c} 54.3(1.5)_F(2.2)_{b_{\pi}}[2.5]_t\\ 13.0(0.4)_F(0.2)_{b_{\eta}}[0.5]_t\\ 12.0(0.4)_F(0.3)_{b_{\eta'}}[0.5]_t\end{array}$
Total	98.4[2.9] _t	79.3[2.6] _t

 $-C_2^1(Q_1^2, Q_2^2)$ -

$a_{\mu}^{\mathrm{HLbL};P} \times 10^{11}$	$a_{P;1,1}^{\min}$	$a_{P;1,1}^{\max}$
π ⁰	$64.1(1.3)_L(0)_{\delta}[1.3]_t\{1.2\}_{sys}$	$63.0(1.1)_L(0.5)_{\delta}[1.2]_t\{2.3\}_{sys}$
η	$16.3(0.8)_L(0)_{\delta}[0.8]_t \{0.8\}_{sys}$	$16.2(0.8)_L(0.6)_{\delta}[1.0]_t\{0.9\}_{sys}$
η'	$14.7(0.7)_L(0)_{\delta}[0.7]_t\{1.3\}_{sys}$	$14.3(0.5)_L(0.5)_{\delta}[0.7]_t\{1.7\}_{sys}$
Total	$95.1[1.7]_t \{3.3\}_{sys}$	$93.5[1.7]_t \{4.9\}_{sys}$

-Final Result (combining errors just for clarity)

$$a_{\mu}^{\pi,\eta,\eta'}=(63.6(2.7)+16.3(1.3)+14.5(1.8)) imes 10^{-11}=94.3(5.3) imes 10^{-11}$$

- Good agreement with $a_{\mu}^{\mathrm{HLbL};\pi} = 63.0(2.7)/62.3(2.3)$ (DR/lattice)
- Current number in WP for η, η'

DR: Hoferichter et al, PRL121 (2018); lattice: Gérardin et al, PRD100 (2019)

____ Summary _____

- Padé approximants to reconstruct form factors
- Full use of data and theory in a systematic approach; not pheno model
- OPE for all the pseudoscalars implemented
- Bypass $\eta \eta'$ mixing (output): non-trivial if fully theory-driven approach
- Good agreement for π with DR/lattice (th. on safe grounds)
- State of the art for η, η'

___ Outlook _____

- π re-evaluation with forthcoming BES III and PrimEx data
- Besides pseudoscalars, interesting relations with axials and $\langle \textit{VVA} \rangle$ constraints [Masjuan, Roig, PSP, 2005.11761]

The pseudoscalar poles contributions to $(g-2)_{\mu}$ Backup

Section 4

Backup

The pseudoscalar poles contributions to $(g-2)_{\mu}$

Backup

Fig. 60. Comparison of the π^0 TFF from dispersion theory [21,497] (red), CA [19] (blue), and lattice QCD [22] (yellow). We show both the singly-(left) and the doubly-virtual (right) form factors.

Fig. 59. Left: BABAR data points [108] with statistical errors (inner bars) and statistical and systematic combined (outer bars) in black, together with the CA prediction including errors (blue bands). Right: The analogous plot for the diagonal $Q^2 F_{\eta'\gamma+\gamma'}(-Q^2, -Q^2)$ TFF.

The pseudoscalar poles contributions to $(g-2)_{\mu}$ Backup

The pseudoscalar poles contributions to $(g-2)_{\mu}$ Backup

