

Perturbative heavy quark contributions to the anomalous magnetic moment of the muon

J. Erler, P. D. Kennedy*, H. Spiesberger

30.09.21

Speaker denoted by *

J. Erler, P. D. Kennedy*, H. Spiesberger

Introduction	Method 0000	Results 00000	Comparison 00	Conclusion O	References O

Overview

- Our method is based on the work of Erler and Luo¹
- Calculation is expanded to $\mathcal{O}(\alpha_s^3)$
- \blacktriangleright Updated to the latest theory inputs for \hat{m}_q and α_s
- Results available as both an explicit analytic formula and a numerical result
- Outline of the uncertainties
- Comparison with other results
- Aside on $(g-2)_e$

J. Erler, P. D. Kennedy*, H. Spiesberger

¹ [Erler and Luo, 2001]

Method ●000	Results 00000	Comparison 00	Conclusion O	References O

Outline

quarks independent of this.

J. Erler, P. D. Kennedy*, H. Spiesberger

² [Davier et al., 2020, Keshavarzi et al., 2020]

c

Application of Cauchy's theorem

$$\oint ds f(s) = 0$$

$$f(s) = 0$$

$$f(s) = 0$$

$$f(s) = -\int_{C_r} \frac{ds}{s^2} \hat{K}(s) \Pi(s)$$

$$a_{\mu}^{had} = \frac{1}{2i} \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 12\pi \int_{\bar{C}_r} \frac{ds}{s^2} \hat{K}(s) \Pi(s)$$

This holds if and only if the functions being integrated are analytically continuous.

Method 00●0	Results 00000	Comparison 00	Conclusion O	References 0

Problem

The Kernel

$$\hat{K}(s) = \int_0^1 dx \frac{3x^2(1-x)}{\frac{m_{\mu}^2}{s} \cdot x^2 + (1-x)}$$

is not in a convenient form for integration. Therefore, it is useful to expand it

$$\left. \hat{K}(s) \right|_{\mathsf{Exp.}} = 1 + \left(\frac{m_{\mu}^2}{s} \right) \cdot \left[\frac{25}{4} + 3 \ln \left(\frac{m_{\mu}^2}{s} \right) \right] + \mathcal{O}\left(\frac{m_{\mu}^4}{s^2} \right)$$

which simplifies the calculation.³ The logarithmic term here is not analytically continuous and cannot be integrated using Cauchy's theorem.

³ [Erler and Luo, 2001]

J. Erler, P. D. Kennedy*, H. Spiesberger

Perturbative heavy quark contributions to the anomalous magnetic moment of the muon

Method 000●	Results 00000	Comparison 00	Conclusion O	References 0

Solution

To solve this, we integrate the terms separately in a form that will allow comparison with the previous result.⁴ The separation is

$$\left. \hat{K}(s) \right|_{\mathsf{Exp.}} = \left. \hat{K}^a(s) \right|_{\mathsf{Exp.}} + \left. \hat{K}^b(s) \right|_{\mathsf{Exp.}} + \left. \hat{K}^c(s) \right|_{\mathsf{Exp.}}$$

where

$$\left. \hat{K}^a(s) \right|_{\mathsf{Exp.}} = 1; \left. \hat{K}^b(s) \right|_{\mathsf{Exp.}} = \frac{m_{\mu}^2}{s} \left(\frac{25}{4} + 3\ln\left(\frac{s_0}{s}\right) \right); \left. \hat{K}^c(s) \right|_{\mathsf{Exp.}} = \frac{m_{\mu}^2}{s} \left(3\ln\left(\frac{m_{\mu}^2}{s_0}\right) \right)$$

and s_0 is chosen to be \hat{m}_q , for convenient comparison. Only $\hat{K}^b(s)\Big|_{\text{Exp.}}$ has terms including $\ln(s)$ and can be integrated numerically along the real axis separately.

⁴ [Erler and Luo, 2001]

J. Erler, P. D. Kennedy*, H. Spiesberger

Perturbative heavy quark contributions to the anomalous magnetic moment of the muon

Method 0000	Results ●0000	Comparison 00	Conclusion O	References O

Explicit result

$$\begin{aligned} a^{q}_{\mu} &= \frac{a^{2}Q^{2}_{q}}{4\pi^{2}} \bigg[\frac{m^{2}_{\mu}}{4\dot{m}^{2}_{q}} \Big(\frac{16}{15} + \frac{3104}{1215} a_{s} \\ &+ \Big(0.50988 + \frac{2414}{3645} n_{l} \Big) a^{2}_{s} + \Big(1.87882 - 2.79492 n_{l} + 0.09610 n^{2}_{l} \Big) a^{3}_{s} \Big) \\ &+ \frac{m^{4}_{\mu}}{16\dot{m}^{4}_{q}} \Big(\frac{108}{1225} - 0.194294 \cdot a_{s} + (-15 \pm 28 - (1 \mp 1) n_{l}) \cdot a^{2}_{s} \Big) \\ &+ 3 \frac{m^{4}_{\mu}}{16\dot{m}^{4}_{q}} \ln \bigg(\frac{m^{2}_{\mu}}{\dot{m}^{2}_{q}} \bigg) \Big(\frac{16}{35} + \frac{15728}{14175} a_{s} \\ &+ \Big(1.41227 + \frac{290179}{637875} n_{l} \Big) a^{2}_{s} \\ &+ \big(-6.23488 + 0.96156 n_{l} - 0.01594 n^{2}_{l} \Big) a^{3}_{s} \Big) \Big) \bigg] \end{aligned}$$

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 0●000	Comparison 00	Conclusion O	References O

Input values

The quark masses we use are

 $\hat{m}_c(\hat{m}_c) = 1.273 \pm 0.009 \text{GeV}; \text{ for } \alpha_s(M_Z) = 0.1185 \pm 0.0016$ $\hat{m}_b(\hat{m}_b) = 4.180 \pm 0.008 \text{GeV}; \text{ for } \alpha_s(M_Z) = 0.1185 \pm 0.0016$ from⁵.

⁵ [Erler et al., 2017, Erler et al., 202x]

⁶ [Zyla et al., 2020]

⁷ [Schmidt and Steinhauser, 2012]

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 0●000	Comparison 00	Conclusion O	References 0

Input values

The quark masses we use are

 $\hat{m}_c(\hat{m}_c) = 1.273 \pm 0.009 \text{GeV}; \text{ for } \alpha_s(M_Z) = 0.1185 \pm 0.0016$ $\hat{m}_b(\hat{m}_b) = 4.180 \pm 0.008 \text{GeV}; \text{ for } \alpha_s(M_Z) = 0.1185 \pm 0.0016$

from⁵. $\alpha_s(\hat{m}_q)$ values are

 $\alpha_s(\hat{m}_c) = 0.396 \pm 0.020$ $\alpha_s(\hat{m}_b) = 0.2267 \pm 0.0061$

given $\alpha_s(M_Z) = 0.1185 \pm 0.0016$ in the EW fit, ⁶ using CRunDec.⁷

- ⁵ [Erler et al., 2017, Erler et al., 202x]
- ⁶ [Zyla et al., 2020]
- ⁷ [Schmidt and Steinhauser, 2012]

J. Erler, P. D. Kennedy*, H. Spiesberger

 $\begin{array}{c|ccccc} Introduction & Method & Results & Comparison & (g-2)_e & Conclusion & References \\ \circ & \circ \circ \circ \circ & \circ & \circ & \circ & \circ & \circ \\ \hline & & & & & & & & & & & & \\ \end{array}$

Numerical results (in unit of 10^{-10})

Our prediction:

$$a^c_{\mu} = 14.5 \pm 0.2$$

 $a^b_{\mu} = 0.302 \pm 0.002$

Parametric error budget:

Quark	Charm	Bottom
$\Delta \hat{m}_q$	-0.18	-0.0011
$\Delta \alpha_s(\hat{m}_q)$	0.19	0.0013
(Anti-)Correlation on $\Delta lpha_s(\hat{m}_q)$	-0.09	0.0001
Total	0.21	0.0018

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 000●0	Comparison 00	Conclusion O	References 0

Charm theoretical uncertainties

$a^{c}_{\mu} \cdot 10^{10}$	$\mathcal{O}(\alpha_s^0)$	$\mathcal{O}(\alpha_s^1)$	$O(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^4)$
$\mathcal{O}\!\left(rac{m_{\mu}^2}{\hat{m}_q^2} ight)$	11.0131	3.3214	0.4087	0.1163	$< \pm 0.12$
$\mathcal{O}\left(rac{m_{\mu}^4}{\hat{m}_q^4}\ln\left(rac{m_{\mu}^2}{\hat{m}_q^2} ight) ight)$	-0.1214	-0.0371	-0.0117	0.0019	$< \pm 0.002$
$\mathcal{O}\!\left(rac{m_{\mu}^4}{\hat{m}_q^4} ight)$	0.0016	-0.00044	-0.0034	$0.00004A_{32}^0$	$<\pm 0.00004 A_{32}^0$
$\mathcal{O}\left(rac{m_{\mu}^{6}}{\hat{m}_{q}^{6}}\ln\left(rac{m_{\mu}^{2}}{\hat{m}_{q}^{2}} ight) ight)$	-0.00074	-0.00018	-0.000072	0.000016	$< \pm 0.00002$
$\mathcal{O}\left(rac{m_{\mu}^{6}}{\hat{m}_{q}^{6}} ight)$	-0.000031	-0.000020	$5A_{23}^0\cdot 10^{-7}$	$6A_{33}^0\cdot 10^{-8}$	$<\pm 6A_{33}^0\cdot 10^{-8}$

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 0000●	Comparison 00	Conclusion O	References 0

Bottom theoretical uncertainties

$a^b_{\mu} \cdot 10^{10}$	$\mathcal{O}(\alpha_s^0)$	$\mathcal{O}(\alpha_s^1)$	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^4)$
$\mathcal{O}\!\left(rac{m_{\mu}^2}{\hat{m}_q^2} ight)$	0.255335	0.044128	0.003937	-0.000698	$< \pm 0.0007$
$\mathcal{O}\left(rac{m_{\mu}^4}{\hat{m}_q^4}\ln\left(rac{m_{\mu}^2}{\hat{m}_q^2} ight) ight)$	-0.00039	-0.000068	-0.000014	8000000.0	$< \pm 0.0000008$
$\mathcal{O}\!\left(rac{m_{\mu}^4}{\hat{m}_q^4} ight)$	0.000003	$-5 \cdot 10^{-7}$	-0.000002	$A^0_{32} \cdot 10^{-8}$	$<\pm A_{32}^0\cdot 10^{-8}$
$\mathcal{O}\left(rac{m_{\mu}^{6}}{\hat{m}_{q}^{6}}\ln\left(rac{m_{\mu}^{2}}{\hat{m}_{q}^{2}} ight) ight)$	$-2 \cdot 10^{-7}$	$-3 \cdot 10^{-8}$	$-9 \cdot 10^{-9}$	$4 \cdot 10^{-10}$	$<\pm 4\cdot 10^{-10}$
$\mathcal{O}\left(rac{m_{\mu}^{6}}{\hat{m}_{q}^{6}} ight)$	$-6 \cdot 10^{-9}$	$-2 \cdot 10^{-9}$	$3A_{23}^0 \cdot 10^{-11}$	$2A_{33}^0 \cdot 10^{-12}$	$<\pm 2A_{33}^0\cdot 10^{-12}$

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 00000	Comparison ●0	Conclusion O	References O

Comparison of a^c_{μ}

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 00000	Comparison	Conclusion O	References 0

Comparison of a^b_μ

J. Erler, P. D. Kennedy*, H. Spiesberger

Results for $(g-2)_e$ (in units of 10^{-15})

Our prediction:

$$a_e^c = 34.2 \pm 0.5$$

 $a_e^b = 0.708 \pm 0.004$

Parametric error budget:

Quark	Charm	Bottom
$\Delta \hat{m}_q$	-0.43	-0.0027
$\Delta \alpha_s(\hat{m}_q)$	0.46	0.0031
(Anti-)Correlation on $\Delta lpha_s(\hat{m}_q)$	-0.22	0.0002
Total	0.49	0.0042

J. Erler, P. D. Kennedy*, H. Spiesberger

Method 0000	Results 00000	Comparison 00	Conclusion •	References 0

Conclusions

- Both of our results are in good agreement with the literature
- Our result for a^b_μ currently highest precision in literature
- We have results independent of cross-section data and LQCD
- Explicit formula allows for increased precision in the future

Method 0000	Results 00000	Comparison 00	Conclusion •	References 0

Conclusions

- Both of our results are in good agreement with the literature
- Our result for a^b_μ currently highest precision in literature
- We have results independent of cross-section data and LQCD
- Explicit formula allows for increased precision in the future

Thank you for listening!

Method 0000	Results 00000	Comparison 00	Conclusion O	References •

Bibliography I

- Davier, M., Hoecker, A., Malaescu, B., and Zhang, Z. (2020).
 A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to α(m²_Z).
 Eur. Phys. J. C, 80(3):241.
 [Erratum: Eur.Phys.J.C 80, 410 (2020)].
- Erler, J. and Luo, M.-x. (2001).
 Hadronic loop corrections to the muon anomalous magnetic moment.
 Phys. Rev. Lett., 87:071804.

Bibliography II

- Erler, J., Masjuan, P., and Spiesberger, H. (2017).
 Charm quark mass with calibrated uncertainty.
 The European Physical Journal C, 77:99.
- Erler, J. P. A., Masjuan Queralt, P., and Spiesberger, H. (202x).
 Bottom quark mass with calibrated uncertainty.
 In preparation.
- Keshavarzi, A., Nomura, D., and Teubner, T. (2020). g-2 of charged leptons, $\alpha(M_Z^2)$, and the hyperfine splitting of muonium.

Phys. Rev. D, 101(1):014029.

Method 0000	Results 00000	Comparison 00	Conclusion O	References ●

Bibliography III

Schmidt, B. and Steinhauser, M. (2012).

CRunDec: a C++ package for running and decoupling of the strong coupling and quark masses. Comput. Phys. Commun., 183:1845-1848.

Zyla, P. et al. (2020). Review of Particle Physics. PTEP, 2020(8):083C01.