All ν_{τ} 's, Great and Small

Tau Neutrino Physics with IceCube Spanning Six Orders of Magnitude in Energy

Doug Cowen Penn State

The IceCube+DeepCore Detector

- IceCube built in 2010 to map the ν sky at $E_{\nu} \sim 1~{\rm TeV}$
 - Find astrophysical v
 - Find astrophysical v sources
 - Help solve mystery of UHECR
- Enhanced with DeepCore
 - more densely instrumented region for DM and atm. ν osc.

Neutrinos in IceCube: Sources

Atmospheric neutrinos

- cosmic rays (mainly protons) interact in the earth's atmosphere
- \bullet resulting particle showers include $\nu ' s$
- IceCube threshold $E_{\nu} \sim 5$ GeV, $E_{\nu}^{\text{atm.}} < \sim 10$ TeV; $E_{\nu} \approx 10^{9-12}$ eV

- Astrophysical high energy neutrinos
 - created in cosmic accelerators, e.g., in particle jets created by black holes
 - Evident at $E_{\nu} > \sim 50 \text{ TeV}$ in IceCube
 - IceCube has seen PeV-scale (10^{15} eV) ν 's

Neutrinos in IceCube: Sources

Atmospheric neutrinos

- cosmic rays (mainly protons) interact in the earth's atmosphere
- \bullet resulting particle showers include $\nu {\rm 's}$
- IceCube threshold $E_{\nu} \sim 5$ GeV, $E_{\nu}^{\text{atm.}} < \sim 10$ TeV; $E_{\nu} \approx 10^{9-12}$ eV

- Astrophysical high energy neutrinos
 - created in cosmic accelerators, e.g., in particle jets created by black holes
 - Evident at $E_{\nu} > \sim 50 \,\, {\rm TeV}$ in IceCube
 - IceCube has seen PeV-scale (10^{15} eV) ν 's

Neutrinos in IceCube: Sources

Atmospheric neutrinos

- cosmic rays (mainly protons) interact in the earth's atmosphere
- \bullet resulting particle showers include $\nu {\rm 's}$
- IceCube threshold $E_{\nu} \sim 5$ GeV, $E_{\nu}^{\text{atm.}} < \sim 10$ TeV; $E_{\nu} \approx 10^{9-12}$ eV

At higher energies, neutrino flavors can be distinguished:

- created in cosmic accelerators, e.g., in particle jets created by black holes
- Evident at $E_{\nu} > \sim 50 \,\, {\rm TeV}$ in IceCube

• IceCube has seen PeV-scale (10^{15} eV) ν 's

Atmospheric ν_{τ}

- Atmospheric ν 's arise mainly from the decay of light mesons
 - At production, expect flux ratio of roughly

 $(\nu_e : \nu_\mu : \nu_\tau) :: (1 : 2 : 0)$

• No ν_{τ} there.

• ν_{τ} arise from ν oscillations as they cross the earth:

$$P_{\nu_{\mu} \to \nu_{\tau}} \approx \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L_{\nu}}{E_{\nu}}\right) \frac{[\text{eV}^2][\text{km}]}{\text{GeV}}$$

• E.g.,
$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \approx 100 \%$$
 for $E_{\nu} \approx 25$ GeV, $L_{\nu} \approx D_{\text{earth}}$

Atmospheric ν_{τ}

- Atmospheric ν 's arise mainly from the decay of light mesons
 - At production, expect flux ratio of roughly

 $(\nu_e : \nu_\mu : \nu_\tau) :: (1 : 2 : 0)$

• No ν_{τ} there.

• ν_{τ} arise from ν oscillations as they cross the earth:

$$P_{\nu_{\mu} \to \nu_{\tau}} \approx \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L_{\nu}}{E_{\nu}}\right) \frac{[\text{eV}^2][\text{km}]}{\text{GeV}}$$

• E.g.,
$$P(\nu_{\mu} \rightarrow \nu_{\tau}) \approx 100 \%$$
 for $E_{\nu} \approx 25$ GeV, $L_{\nu} \approx D_{\text{earth}}$

Atmospheric ν_{τ} Reconstruction

- Atm. ν_{τ} will produce particle showers in the detector
- We reconstruct the energy & direction of these showers, and can distinguish them from track-like events
- Look for excess of upward-going, shower-like interactions around 20 GeV

21 GeV ν_{τ} (sim.)

IceCube/Upgrade $(N_{\gamma} much \text{ larger})$

IceCube/DeepCore

First IceCube ν_{τ} Appearance Measurement

Future IceCube ν_{τ} Appearance Measurements

Astrophysical $\nu: E_{\nu} > 10^{13-14} \text{ eV}$

- ν mainly from π^{\pm} decay in astrophysical beamdumps
- Needle in a haystack!
 - 10^{11} atmospheric μ /yr,
 - 10^5 atmospheric ν /yr, and
 - 10^1 astrophysical $\nu/{
 m yr}$

- Beat down atm. μ using part of detector as veto (see below)
- Separate atm. ν from astrophys. ν using E_{ν} , spatiotemporal concidence, and/or event topology

Astrophysical $\nu: E_{\nu} > 10^{13-14} \text{ eV}$

- ν mainly from π^{\pm} decay in astrophyical beamdumps
- Needle in a haystack!
 - 10^{11} atmospheric μ /yr,
 - 10^5 atmospheric ν /yr, and
 - 10^1 astrophysical $\nu/{
 m yr}$

- Beat down atm. μ using part of detector as veto (see below)
- Separate atm. ν from astrophys. ν using E_{ν} , spatiotemporal concidence, and/or event topology

Astrophysical ν_{τ}

- Measurements to date:
 - Search for clean "double pulse" waveforms arising from "twocascade" signature
 - Two u_{τ} candidates found:
 - With
 - 1:1:1 flavor ratio at earth
 - $\Phi(\nu) \propto E_{\nu}^{-2.87}$

expect 1.5 signal + 0.8 background in 7.5 yrs

• (Estimate that 98% and 76% of events like the two seen are ν_{τ} -induced)

Astrophysical ν_{τ}

- Joint flavor analysis:
 - First time best fit point with $(\Phi_{\nu_e}, \Phi_{\nu_{\mu}}, \underline{\text{and}} \ \Phi_{\nu_{\tau}}) \neq 0$
 - \bullet First probe of ν flavor oscillations over cosmic baselines & at the TeV scale
 - Rules out no- $u_{ au}^{\mathrm{astro.}}$ hypothesis at 2.8σ

"Flavor Triangle"

Future Astrophysical ν_{τ} Measurement

- Waiting for a clean "double bang" would require much patience: $E_{\nu_{\tau}} > \sim \text{PeV}$ are rare.
- Instead use more plentiful "double pulse" ν_{τ} events at lower threshold energies: $E_{\nu_{\tau}} > \sim 50 \text{ TeV}$
- Follow in footsteps of previous analyses, but look for DP signature on 3 strings (180 vs. 1–2 modules)
 - Render each string into a 2-D image
 - Identify DP signal(s) using deep convolutional neural networks

Future Astrophysical ν_{τ} Measurement

- Preliminarily predict ~5.5 ν_{τ}^{CC} on background of ~0.3 events
 - 10 years livetime
 - background dominated by other–flavor astrophysical ν
 - systematic effects appear to have minimal impact
- With ~5 events, can rule out $no-\nu_{\tau}^{astro.}$ at high confidence
- May be able to better constrain astrophysical neutrino "flavor triangle"
- Also: Exploring supra-PeV ν_{τ} producing kms-long τ tracks
 - Potentially distinguishable from μ tracks (smoother: $m_{\tau} \gg m_{\mu}$)

After opening the box, here's what the triangle plot might look like for two selected values of events seen:

Blue lines from IceCube Collaboration, Phys. Rev. D 99, 032004 Orange lines lack full systematic treatment.

Future Astrophysical ν_{τ} Measurement

- Preliminarily predict ~5.5 ν_{τ}^{CC} on background of ~0.3 events
 - •10 years livetime
 - background dominated by other–flavor astrophysical ν
 - systematic effects appear to have minimal impact
- With ~5 events, can rule out $no-\nu_{\tau}^{astro.}$ at high confidence
- May be able to better constrain astrophysical neutrino "flavor triangle"
- Also: Exploring supra-PeV ν_{τ} producing kms-long τ tracks
 - Potentially distinguishable from μ tracks (smoother: $m_{\tau} \gg m_{\mu}$)

Conclusions

- \bullet IceCube is unique in its broad sensitivity to ν_{τ} and τ
 - •~6 orders of magnitude in $E_{\nu_{\tau}}$ and E_{τ}
 - ~20 orders of magnitude in $L_{\nu_{\tau}}$
- \bullet IceCube makes both inclusive and exclusive measurements of ν_{τ} and τ
 - Inclusive: $\nu_{\mu}^{\text{atm}} \rightarrow \nu_{\tau}^{\text{atm}}$ appearance with world's largest sample (thousands of ν_{τ} and τ)
 - Fundamental ν oscillation measurement
 - Current measurement in agreement with standard ν osc. picture; future measurements will have compelling sensitivity to non-standard physics
 - Exclusive: $\nu_{\tau}^{\text{astro}} \rightarrow \tau \rightarrow \text{double pulse, not with world's largest sample (yet)}$
 - Powerful probe of ultra-long baseline, ultra-high energy ν oscillations, and of astrophysical accelerator ν production scenarios
 - Very early days for $u_{ au}^{\mathrm{astro}}$...but maturing rapidly!

