Contribution ID: 24 Type: Oral contribution

On the scalar πK form factor beyond the elastic region

Wednesday 29 September 2021 09:25 (20 minutes)

Pion-kaon (πK) pairs occur frequently as final states in heavy-particle decays.

A consistent treatment of πK scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications:

in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances.

In the elastic region, the phase shifts of πK scattering in a given partial wave are related to the phases of the respective πK form factors by Watson's theorem.

Going beyond that, we constructed in Ref.[1] a representation of the scalar πK form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from πK scattering and maintaining the correct analytic structure.

As a first application, we considered the decay $\tau \to K_S \pi \nu_\tau$, in particular, we studied to which extent the S-wave $K_0^*(1430)$ and the P-wave $K^*(1410)$ resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator.

[1] Von Detten, L. and Noël, F. and Hanhart, C. and Hoferichter, M. and Kubis, B. Eur. Phys. J. C 81, 420 (2021); DOI: 10.1140/epjc/s10052-021-09169-7

What is your topic?

Hadronic decays

Authors: NOËL, Frederic (Universität Bern); VON DETTEN, Leon (Forschungszentrum Jülich); HANHART, Christoph (IAS/IKP Forschungszentrum Jülich); HOFERICHTER, Martin (University of Bern); KUBIS, Bastian (Bonn University)

Presenter: NOËL, Frederic (Universität Bern)

Session Classification: Session 3: Exclusive and inclusive hadronic tau decays

Track Classification: Tau2021 Abstracts