First Results and Prospects for the LFV decay $\tau \rightarrow l\alpha$ (invisible) at Belle II

Alejandro De Yta Hernández (CINVESTAV)

on behalf of the Belle II Collaboration

Sep 28th, 2021

September 27, 2021 - October 1, 2021

Cinvestav

Introduction

- Search for the LFV decay channels: $\tau \rightarrow e\alpha$ and $\tau \rightarrow \mu \alpha$ being α a BSM invisible particle.
- This decay appears in several NP models: Axion-like particles, Z' gauge boson, etc.
- Idea: Search for a two body decay.

The momentum spectrum of the signal lepton will manifest as a peak in the τ rest frame with a position depending on the α mass.

Previous searches

 $\tau \rightarrow \mu \alpha$

0.00

0.05

0.04

0.03

 $\rightarrow \ell \nu \overline{\nu}$

- Mark III (1985, 9.4 pb⁻¹)
- ARGUS (1995, 472 pb⁻¹)

Z.Phys. C68 (1995) 25-28

ARGUS

SuperKEKB Collider

Belle II at SuperKEKB

See: Luminosity projection

 Regular data-taking despite Covid-19 pandemics

CINVESTAV

Event selection

- 3x1 prong $\tau^+\tau^-$ events:
 - $\tau \rightarrow l\alpha \& \tau \rightarrow 3\pi v$
 - Exactly 4 tracks per event
 - Hemisphere separation using thrust vector
 - 1 track in the signal side
 - 3 tracks in the tag side
- Dominant bkg: τ→lvv
 - We can not suppress it
 - We optimize for $e^+e^- \rightarrow \tau(3\pi\nu)\tau(l\nu\overline{\nu})$
- Other bkgs:
 - ττ (no 3x1)
 - $B\overline{B}$, $q\overline{q}$, $ee(\gamma)$, $\mu\mu(\gamma)$
- Preselection cuts:

$$V_{thrust} = \frac{\sum_{i} |\vec{p_i}^{\ cm} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p_i}^{\ cm}|}$$

Alejandro De Yta

CINVESTAV

Background suppression I

- Vertex fit
 - 3-prong side (reject failed fits)
- Neutrals
 - $\#\gamma_{1\text{prong}} = \#\gamma_{3\text{prong}} = 0$
 - $\#\pi^{0}_{1\text{prong}} = \#\pi^{0}_{3\text{prong}} = 0$
- 3-prong tracks with asymmetric pt cuts
 - Ranking the pt (leading, sub-leading, third)
 - Optimal cuts based on the figure of merit

$$FOM = \frac{S}{\sqrt{S+B}}$$

- Electron channel
 - Leading $p_t > 0.69$ GeV/c
 - Sub-leading pt > 0.29 GeV/c
 - Third $p_t > 0.08$ GeV/c

-200 -150 100 -50 00 50 100 150 200 100

- Muon channel
 - Leading $p_t > 0.47$ GeV/c
 - Sub-leading pt > 0.17 GeV/c
 - Third $p_t > 0.04$ GeV/c

Background suppression II

Variables:

- Thrust of the event
- Invariant mass of the 3-prong system ٠
- Energy of the 3-prong system
- Cuts optimized by the figure of merit: $FOM = \frac{S}{\sqrt{S+B}}$

- **Electron channel**
 - 0.9 < thrust < 0.99
 - 0.5 < Inv M(3-prong) < 1.7 GeV/c²
 - $1.2 < E_{CMS}(3-prong) < 5.3 \text{ GeV}$

Muon channel

- 0.9 < thrust < 1.0
- 0.4 < Inv M(3-prong) < 1.7 GeV/c²
- 1.1 < E_{CMS}(3-prong) < 5.3 GeV

Alejandro De Yta

CINVESTAV

<u>τ Pseudo-rest Frame</u>

• In the signal τ rest frame, the momentum of the lepton will be a monoenergetic peak with position depending on the α mass.

 $\vec{P}_{3\pi}$

τ

 $-\vec{P}_{3\pi}$

- We cannot access the τ rest frame directly due to missing particles
 - Use ARGUS method
 - $E_{\tau} = \sqrt{s/2}$
 - Approximation: τ flight direction given by the momentum of the 3-prong system

Statistical treatment

CINVESTAV

- Template based analysis
 - Fit the lepton momentum spectrum
 - Hypothesis test
- The data can be modeled as

$$F(x) = N_{e \alpha} f_{e \alpha}(x) + N_{e \nu \nu} f_{e \nu \nu}(x) + N_{b k g} f_{b k g}(x)$$

$$= \frac{\varepsilon^{e\alpha}}{\varepsilon^{e\nu\nu}} N_{e\nu\nu} \operatorname{poi} f_{e\alpha}(x) + N_{e\nu\nu} f_{e\nu\nu}(x) + N_{bkg} f_{bkg}(x)$$

where f is pdf for each contribution and

$$poi \stackrel{\text{\tiny def}}{=} \frac{N_{e\alpha}}{N_{e\nu\nu}} \frac{\varepsilon^{e\nu\nu}}{\varepsilon^{e\alpha}} = \frac{Br(\tau \rightarrow e\alpha)}{Br(\tau \rightarrow e\nu\nu)}$$

- Upper limit estimation (MC-based) for poi:
 - Modified frequentist approach: CL_s
 - UL at 95% CL
- Bayesian approach (work in progress)

Upper limit sensitivity

- We provide the UL sensitivity for $Br(\tau \rightarrow l\alpha)/Br(\tau \rightarrow l\nu\nu)$ at 95% CL for $L_{int} = 62.8 \text{ fb}^{-1}$
- No systematic uncertainties are included

CINVESTAV

UL: systematic uncertainties

- We provide the UL sensitivity for $Br(\tau \rightarrow l\alpha)/Br(\tau \rightarrow l\nu\nu)$ at 95% CL for $L_{int} = 62.8 \text{ fb}^{-1}$
- We have identified the sources of dominant systematic uncertainties
 - LID
 - Trigger

A scenario with reduced systematic effects is expected.

Conclusions & perspectives

- We estimate the UL sensitivity for $Br(\tau \rightarrow l\alpha)/Br(\tau \rightarrow l\nu\nu)$ at 95% CL for $L_{int} = 62.8 \text{ fb}^{-1}$
- We identify possible sources of systematic effects:
 - Some of them seem to be negligible
 - For the non-negligible sources, we included their effects in the upper limit estimation
- This is a closed box analysis
 - Data-MC validation procedure is ongoing
 - We aim to open the box in the near future

Stay tuned!

Thank you for your attention!

Alejandro De Yta