

Search for Muon to Electron Conversion at J-PARC – COMET Experiment

MyeongJae Lee (Institute for basic science, Korea) The 16th International Workshop on Tau Lepton Physics

CLFV was Observed!

Neutrino Experiments

R.Harnik (FNAL), "CLFV theory", The Allure of Ultrasensitive Experiments (2014)

CLFV was Observed!

Neutrino Experiments

Massive, oscillating neutrino ⇒ CLFV in minimally extended SM But long range interaction!

We want to understand Short range CLFV interaction in BSM with muon

OMET Very small possibility of CLFV in SM

$$BR(\ell_1 \to \ell_2 \gamma) = \frac{3\alpha}{32\pi} \left| \sum_{j=1}^{3} U_{\ell_1 j} U_{\ell_2 j}^* \frac{m_{\nu_j}^2}{M_W^2} \right|^2$$
$$\cong \mathcal{O}(\mathbf{10^{-55} - 10^{-54}})$$

$$R_{\mu e} = \frac{\Gamma(\mu \to e)}{\Gamma(\text{capture})}$$

\$\times 0(\alpha) \times BR(\mu \times e\gamma) \lesssip 10^{-54}\$

In SM, we need 30x more muon than the Earth. CLFV observation= Signature of New physics in BSM

OMET How much sensitive to BSM

W. Altmannshofer et al., Nuclear Physics B 830, (2010)

***	Large effects
**	Visible but small
*	No sizeable effect

(Muon) LFV experiments are generally most sensitive to many BSM models, very high NP scale.

Note: All experiments are equally important to discriminate models

- experiments are sensitive to.
- Muon LFV experiments can cover various BSM in much higher energy scale
 - M.J.Lee, COMET, TAU 2021 Sep 28, 2021

OMET Muon LFV

Other searches

 μ -N \rightarrow e⁺N'

 $u^-e^- \rightarrow e^-e^-$

 $\mu^{-}\rightarrow e^{-}X$

Muonium

Oscillation

- MEG
- ▶ MEG II (PSI)

$\mu^+ \rightarrow e^+ e^- e^+$

Mu3e (PSI)

μ·N→e·N

- DeeMe (J-PARC)
- COMET (J-PARC)
- Mu2e (FNAL)
- Mu2e-II (FNAL)
- ▶ PRISM/PRIME
- <1.0x10⁻¹² @90% CL

<7x10⁻¹³ @Au, 90% CL SINDRUM-II 2006

SINDRUM, 1988

OMET Dipole or Contact interactions

8

Probing O(10⁴) TeV mass scale,

interaction

→ Much higher energy scale than LHC

Sep 28, 2021

Muon Capture

(61% (AI))

- $\mu^- + p \to \nu_\mu + n$
- Muon decay with nucleus
- BG hit source /Radiative MuonCapture (RMC) BG

Decay in orbit(DIO)

- $\mu^- \to e^- \bar{\nu}_e \nu_\mu$
- Bound muon decay
- Major BG source

$\mu^{-} \rightarrow e^{-}$ conversion

- $\mu^- + N \rightarrow e^- + N$
- $E(e^-;AI) = m_{\mu} E_{rec} E_B$ = 104.97 MeV : Signal

— DIO endpoint

Muon mass

OMET COMET Phase-I Experiment: for O(10-15) SES

омет J-PARC facility / Beamline

- J-PARC currently MR shutdowned for PS upgrade, until middle of 2022, for MW beam
- COMET beamline construction complete foreseen during shutdown

омет Pulsed proton beam

Ti:338ns

2.2 usec for free muon

Muon lifetime

Atomic number (Z)

- I. Pulsed protons arrive at production target, producing pions.
- 3. Captured muon processes with **finite lifetime**.
- 2. Muons(+pion) arrive at stopping target: Prompt RPC BG events
- 4. Some time after muon beam arrival, signal electron is measured, avoiding prompt events.

Pulsed proton beam + delayed signal timing window suppresses Radiative Pion Capture (RPC, $\pi^{\pm}N \rightarrow N'\gamma$) BG. 10⁻¹⁰ extinction factor required.

M.J.Lee, COMET, TAU 2021

Sep 28, 2021

омет Solenoid magnet status

detector system

muon transport system

Ready by 2023

degC.

C.Wu, NIMA v.1015 (2021)

OMET Main detector for Phase-I: CyDET(CDC+CTH)

ibs

Cylindrical Drift Chamber, constructed in 2016

- ► CDC:All stereo-wire drift chamber, 20 layers, \sim 5000 sense wires, He:iC₄H₁₀ = 9:1, HV=1850V
- Momentum resolution <200keV/c @ 105 MeV/c, spatial resolution 170um
- Cosmic test underway in KEK.

- CTH: 64-segmented two layered scintillators, providing trigger
- ➤ ~0.8 ns timing resolution

6 M.J.Lee, COMET, TAU 2021

Sep 28, 2021

OMET CDC BG Rejection, On/Offline, using BDT

Signal Retention Efficiency

ROC for BG hit

Original Wire Features Binned Wire Features

- **Offline** BG hit rejection 95%, signal eff. 99%
- Offline BG event rejection 95%, signal eff. 90%
- Using hit layer and hit energy deposition info.

- Online BG hit/event classification using charge and layer features
- Trigger board implementation to the LUT of FPGA
- Trigger rate reduced from 91 kHz to 13 kHz, 96% efficiency and 3.2µs latency.

/ CRV (CosmicRay Veto)

- Detector for Phase-II experiment / Beam measurement in Phase-I (1/1000 beam power)
 - ▶ 5 station of straw detectors+ ~2000 LYSO calorimeter
- Beam test with prototype achieved 150um spatial resolution, <200keV/c momentum resolution feasible.
- First full scale straw module assembled

To suppress Cosmic Ray muon to factor of 10-4

 Note: CDC can fullreconstruct Cosmic ray

OMET A new search: $\mu^- \rightarrow e^+$ in COMET Phase-I

$$\mu^- + N(A, Z) \to e^+ + N(A, Z - 2)$$

- Similar process with $0v\beta\beta$ in eµ sector, Provides clues in LNV and Majorana v
- Theoretical estimation :

$$\mathcal{R}^{\mu^{-}e^{+}} \equiv \frac{\Gamma(\mu^{-} + N(A, Z) \to e^{+} + N'(A, Z - 2))}{\Gamma(\mu^{-} + N(A, Z) \to (\text{All muon capture}))}$$

$$= 2.6 \times 10^{-22} \times \left\{ \frac{\left| \langle m_{\nu} \rangle_{\mu e} / m_{e} \right|^{2} |\mathcal{M}_{\nu}|^{2}}{\left| \langle M_{N}^{-1} \rangle_{\mu e} m_{p} \right|^{2} |\mathcal{M}_{N}|^{2}} \text{ (heavy neutrino)} \right\}$$

 $(0.008-1.7) \times 10^{-41}$ for a light neutrino, normal neutrino mass hierarchy, $(0.05-6.7) \times 10^{-40}$ for a light neutrino, inverted neutrino mass hierarchy, $\leq 3.8 \times 10^{-24}$ for a heavy neutrino. (Note: Most recent measurement by SINDRUM-II (1998) with Ti : 1.7×10⁻¹²)

- ▶ Hard to beat $0v\beta\beta$ for (heavy) Majorana neutrino search, but observation imply:
 - Majorana neutrino ; Flavor effect suppressed in $0\nu\beta\beta$ but becomes dominant in eµ sector ; Even more complex interaction is responsible to neutrino mass

OMET A new search: $\mu^{-} \rightarrow e^{+}$ in COMET Phase-I

- Experimentally simple but hard to achieve good sensitivity
 - By flipping charge. No DIO BG
 - ▶ RMC background dominates Endpoint energy not well measured / understood
 - N(A,Z-2) may be excited (Giant resonance) − broader (O(10MV)) signal spectrum
 - Although, COMET (and Mu2e) will be able to provide new opportunity for improved measurement

Experimental understanding of RMC / proper muon target choice are

important

 Replacing Al target to other nuclei may allow O(10⁴) sensitivity improvement

омет Experiment Sensitivity of µ⁻→e⁻

1bS

- COMET Phase-I Target single event sensitivity: 3x10-15
 - ▶ 100 times improvement from SINDRUM-II
 - Phase-II: $2.5 \times 10^{-17} \sim 10^{-18}$
- ► Net acceptance = **4.1**%
 - ▶ Online efficiency ~0.99
 - Geometric acceptance + track quality ~0.18 \(\frac{1}{2} \)
 - ▶ 103.6 MeV < p < 106MeV : 0.93
 - > 700ns < t < 1170 ns : 0.3
- Background = **0.032**
 - ▶ DIO ~ 0.01 (dominant)
 - ▶ RPC ~ 0.003, Cosmic < 0.01
- Schedule
 - Detector integration by 2023 summer
 - ▶ Engineering run: end of 2023, followed by physics run

E							
0.16							
0.14					-		
0.16			-	-	ďΉ		
0.1							
0.08							
0.06		_			-	-	
0.04		<u> </u>					
0.02				,-		-	
181.5 10	2 102.5	103	103.5	104	104.5	105	105.5 11 turn [MeV/c]

Event selection	Value	Comments
Online event selection efficiency	0.9	Sect. 8.1.1
DAQ efficiency	0.9	
Track finding efficiency	0.99	Sect. 5.4
Geometrical acceptance + Track quality cuts	0.18	
Momentum window (ε_{mom})	0.93	$103.6 \text{ MeV/}c < P_e < 106.0 \text{ MeV/}c$
Timing window ($\varepsilon_{\text{time}}$)	0.3	700 ns < t < 1170 ns
Total	0.041	

Type	Background	Estimated events
Physics	Muon decay in orbit	0.01
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-9}$
Delayed beam	Beam electrons	~ 0
	Muon decay in flight	~ 0
	Pion decay in flight	~ 0
	Radiative pion capture	~ 0
	Antiproton-induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.01
Total		0.032

омет International Future Planning

A.Baldini et al., arXiv:1812.06540v1

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Rich physics in near and long future for Muon LFV!