Search for charged lepton flavor violation at BESIII

Dayong Wang dayong.wang@pku.edu.cn

Beijing Electron Positron

- 1984 ground breaking
- 1988 1st collision
- 1989 data-taking began
- Minor updates in mid-90s

BEPCII: a τ-c Factory

- □ Rich of resonances, charmonia and charmed mesons.
- **D** Threshold characteristics (pairs of τ , D, D_s, charmed baryons...).
- **Transition** between perturbative and non-perturbative **QCD**.
- New hadrons: glueballs, hybrids, multi-quark states
- **Rare and forbidden decays: New Physics beyond the SM**

- \sim <u>3 B</u> ψ (3686) events
- ~ 10 B J/ψ events

<u>~ 2.9/fb (20/fb soon)</u> ψ (3770)

<u>~23/fb (30+15/fb in future)</u>

- 20 points for R &QCD Scan: 500/pb in 2015
- Y(2175) resonance: 100 /pb :
- 3/fb Ds data at 4170 MeV ~ 5×CLEO-c
- 3.8/fb 4.6-4.7GeV data in 2020
- 4.7-4.95GeV in 2021
- \sim other data sets: tau, $\Lambda_{\rm c},$ resonance scan and continuum, etc.

~ 170×BESII

~ 3.5(24)×CLEO-c

XYZ above 4 GeV Unique

Features for NP search@BESIII

2019/2/11

- Event is very clean
- □ High tagging efficiency
- □ Many systematic uncertainties can be cancelled
- Could measure absolute BFs

> D⁰⁽⁺⁾ samples

> $D_s^+/D_s^+/\Lambda_c^+$ samples

Charged LFV in J/ψ decays

- New physics models predicting BR(J/ $\psi \rightarrow e\mu$) to $10^{-16} \sim 10^{-9}$, BR(J/ $\psi \rightarrow e\tau(\mu\tau)$) to $10^{-10} \sim 10^{-8}$.
 - model-independent prediction [1, 2]
 - rotating mass matrix [3]
 - unparticle physics [4]
 - effective Lagrangian [5]
 - MSSM with gauged baryon and lepton number [6]
 - . .
- Experimental results

	J/ψ number	$J/\psi ightarrow e\mu$	$J/\psi o e au$	$J/\psi o \mu au$
BES	58 million	$< 1.1 \times 10^{-6}$ [7]	< 8.3×10 ⁻⁶ [8]	$< 2.0 \times 10^{-6}$ [8]
BESIII	225 million	< 1.6×10 ⁻⁷ [9]	-	-

- [1] X. M. Zhang et al, Phys. Rev. D 63, 016003 (2000).
- [2] T. Gutche et al, Phys. Rev. D 83, 115015 (2011).
- [3] J. Bordes and H. M. Chan, Phys. Rev. D 63, 016006 (2000).
- [4] K. S. Sun et al, Mod. Phys. Lett. A 27, 1250172 (2012).
- [5] D. E. Hazard and A. A. Petrov, Phys. Rev. D 94, 074023 (2016).
- [6] X. X. Dong et al, Phys. Rev. D 97, 056027 (2018).

[7] BES Collaboration, Phys. Lett. B 561, 112007 (2003).

[9] BESIII Collaboration, Phys. Rev. D 87, 112007 (2013).

[8] BES Collaboration, Phys. Lett. B 598, 172 (2004).

B€SⅢ

Search for $J/\psi \rightarrow e^{\pm}\tau^{+}$

Phys. Rev. D 103, 112007 (2021)

- **Based on 10 billion** J/ψ **data set:**
 - ◆ 1310.6M collected @2009+2012 (sample I)
 - 8774.01M collected @2017-2019 (sample II)
- **Searching process**: $J/\psi \rightarrow e\tau$, $\tau \rightarrow \pi \pi^0 \nu$
 - One electron and one charged pion.
 - At least two photon showers and one π^0 .
 - Two-body-decay
 - One undetected neutrino with missing energy

• Blind analysis to avoid possible bias

Event selection: $J/\psi \rightarrow e^{\pm}\tau^{\mp}$

- Select two good charged tracks with PID.
 - The electron candidate: $CL(e) > CL(\pi, \mathbf{K}), \frac{CL(e)}{CL(\pi) + CL(e)} > 0.95, \mathbf{E}/\mathbf{p} > 0.8$
 - The pion candidate: $CL(\pi) > CL(e,\mathbf{K})$
- Select at least two good showers.
 - Select π^0 with 0.115< $M_{\gamma\gamma}$ <0.150 GeV
- Passing 1C kinematic fit with $\chi^2 < 200$.
- Two-body-decay:
 - $1.009 GeV < P_e < 1.068 GeV$
 - $1.742 GeV < M_{e_recoil} < 1.811 GeV$.
- Missing energy $E_{miss} > 0.43 GeV$.

Bearch for $J/\psi \rightarrow e^{\pm}\tau^{\mp}$

• Background from J/ψ resonance and continuum process.

	$N_{bkg}^{J/\psi}$	$N_{bkg}^{cont.}$	N_{bkg}^{total}	N _{data}
Sample I	1.1 ± 0.8	5.8 <u>+</u> 1.8	6.9 <u>+</u> 1.9	13
Sample II	25.7 ± 6.4	37.9 <u>+</u> 11.5	63.6 <u>+</u> 13.2	69

- Total systematic uncertainty $\sim 4\%$.
- No excess of events is observed over the background.

Sources	sample I	sample II
Number of J/ψ	0.5%	0.4%
Quoted BF*	0.4%	0.4%
MC model	0.6%	-
Pion PID*	1.0%	1.0%
Pion tracking*	1.0%	1.0%
Electron PID	0.4%	0.9%
Electron tracking*	0.1%	0.1%
Photon detection*	1.0%	1.0%
π^0 reconstruction*	1.0%	1.0%
P_e and M_{e_recoil} requirements	3.0%	3.3%
E_{miss} requirement	1.0%	0.8%
Total uncertainty	3.9%	4.1%

- Determination of upper limit at 90% C.L. with Bayesian method, assuming:
 - the survived data events ~ Poisson,
 - detection efficiency ~ Gaussian,
 - background estimation ~ Gaussian.
- Combined result:
 - $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8} @ 90\%$ C.L.
- This result improves the previous published limits by two orders of magnitude and comparable with the theoretical predictions.
- The 1st published paper based on full 10 billion J/ψ data of BESIII

Phys. Rev. D 103, 112007 (2021)

Search Result: $J/\psi \rightarrow e^{\pm}\mu^{\mp}$

- Data set: 225 million J/ψ .
- Two opposite charged tracks, no missing track.
- 4 candidates found in the signal region, consistent with background expectations (4.75 ± 1.09) .

∑ð∣∕√s

- Total systematic uncertainty ~ 5.8%.
- Upper limit is obtained by the Feldman-Cousins method with systematic uncertainties included.
- Upper limit at 90% C.L.

 $BR(J/\psi \rightarrow e\mu) < 1.6 \times 10^{-7}$

Update in progress:

- Data set: 10 billion J/ψ .
- Upper limit expectation $10^{-9} \sim 10^{-8}$.

Prospects: more cFLV channels

$$\gg J/\psi \to e\tau, \ \tau \to \mu \nu_{\mu} \nu_{\tau} \text{ and } J/\psi \to \mu \tau, \ \tau \to e \nu_e \nu_{\tau}$$

- Two opposite charged tracks, two missing tracks.
- Data set: 58 million \rightarrow 10 billion.
- Upper limit expectation $\sim 10^{-8}$.

 $\gg J/\psi \rightarrow \gamma e \tau$ and $J/\psi \rightarrow \gamma \mu \tau$

- Two opposite charged tracks, one EMC shower, several missing tracks.
- Data set: 10 billion.
- No previous measurement.
- Upper limit expectation $\sim 10^{-8}$.

cLFV processes from $\psi(\text{2S}),$ D, η and $\eta'\,$ decays are also possibly to search at BESIII, esp for the coming final datasets

2021/9/28

TAU2021

BESIII New Physics: Outlook

Extended running of another 5-8 years, with upgrade in both energy and lumi BEPC-U under investigation: x3 in lumi

Exotic Decays and New Physics

6.1	Introduction ·····			
6.2	Rare d	Rare decays of charmonia and charmed hadrons		
	6.2.1	Weak decays of charmonia states		
	6.2.2	Rare radiative and rare leptonic $D_{(s)}$ decays		
6.3	Symm	etry test in hyperon decays		
	6.3.1	Probing CP asymmetry in hyperon decays		
	6.3.2	Constraint on BNV from $\Lambda - \overline{\Lambda}$ Oscillation		
	6.3.3	More symmetry violation in hyperon decays		
6.4	Charge	ed Lepton Flavor (Number) Violation decays		
	6.4.1	Decays of J/ψ , $\psi(3686) \rightarrow l_1 l_2$, $l_1 l_2 \gamma$		
	6.4.2	$X_c(\eta_c) \rightarrow l_1 l_2$ via photon tagging in $\psi(3686) \rightarrow \gamma X_c(\eta_c)$		
	6.4.3	(radiative) Leptonic decays of $D^0 \rightarrow l_1 l_2, \gamma l_1 l_2$		
	6.4.4	CLFV and LNV $D_{(s)}$ decays with light mesons		
6.5	Search	nes for light (invisible) NP particles		
	6.5.1	Physics of the Dark Sector		
	6.5.2	(radiative) Invisible decays of charmonia		
	6.5.3	Invisible decays of D mesons		
	6.5.4	Invisible decays of light mesons		
6.6	Off-res	sonance searches		
	6.6.1	Rare charm production: $e^+e^- \rightarrow D^*(2007)$		
	6.6.2	Dark photon and dark Higgs searches		
	6.6.3	Axion-Like particles		
	6.6.4	Searches for fractionally charged particles		
Refe	erence ·			

Future Physics Programme of BESIII Chinese Phys. C 44, 040001 (2020).

- ✓ Further explore BESIII NP potential
 - •Near-threshold production
 - •High lumu
 - •Clean signals
- Produce more influential results with these advantages

Open for new opportunity

- BESIII has a rich new physics search program
- charged LFV with the world largest e^+e^- annihilation J/ψ . Latest results are reported:
 - $BR(J/\psi \to e\tau) < 7.5 \times 10^{-8}$ @ 90% C.L. Phys. Rev. D 103, 112007 (2021)
 - The 1st publication with 10B J/ψ sample
 - $BR(J/\psi \to e\mu) < 1.6 \times 10^{-7}$ @ 90% C.L.
 - With 225M J/ψ sample

ole

Phys. Rev. D 87, 112007 (2013)

- In updates with 10B data: $10^{-9} \sim 10^{-8}$
- Better/more constraints on LFV processes can be expected from BESIII in future.
 - ...More to come!

Thanks!

2021/9/28 TAU2021

Dayong Wang