

Lepton Flavour Universality tests and Lepton Flavour Violation searches at LHCb

Sara Celani On behalf of the LHCb collaboration

The 16th International Workshop on Tau Lepton Physics 28.09.2021

Outline

- The flavour puzzle

- Lepton Flavour Universality tests
 - $\blacktriangleright b \rightarrow s\ell\ell$ decays (Neutral Current)
 - ► $b \rightarrow c \ell \nu$ decays (Charged Current)
- Lepton Flavour Violating Decays
- Conclusion & Outlook

nt) ent)

The flavour puzzle

3 identical replica (i = 1, 2, 3) of the same family differing only in mass

Gauge interactions have the same amplitude for all the families: Lepton **Flavour Universality (LFU)**

Flavour is conserved: stringent limits on Lepton Flavour Violating (LFV) decays

- Why 3 generations?
- What is the origin of their different $\lambda^2/2$ quark-mixing $-i\eta$) mass? $V_{CKM} = \begin{pmatrix} -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-in) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$

 $\mathscr{L}_{\text{SM}} = \mathscr{L}_{\text{gauge}}(\psi_i, A_a) + \mathscr{L}_{\text{Higgs}}(\psi_i, A_a, H)$

 $\mathcal{L}_{\text{Higgs}} = \mathcal{L}_H + \mathcal{L}_{Yukawa}$

Only Yukawa interaction distinguishes the families

V_{CKM} nearly diagonal

What is the origin of the hierarchy in

The flavour puzzle

 $\mathscr{L}_{\text{gauge}} = \sum_{i=1}^{n-1} \frac{-1}{4g_a^2} (F_{\mu\nu})^2 + \sum_{i=1}^{n} \bar{\psi}_i i \mathcal{D} \psi_i$

Gauge interactions have the same amplitude for all the families: Lepton **Flavour Universality (LFU)**

Flavour is conserved: stringent limits on Lepton Flavour Violating (LFV) decays

- Why 3 generations?
- What is the origin of their different $\lambda^2/2$ mass?

$\mathscr{L}_{\text{SM}} = \mathscr{L}_{\text{gauge}}(\psi_i, A_a) + \mathscr{L}_{\text{Higgs}}(\psi_i, A_a, H)$

$\mathcal{L}_{\text{Higgs}} = \mathcal{L}_H + \mathcal{L}_{Yukawa}$

Only Yukawa interaction distinguishes the families

Is there New Physics out there? What is the origin of the hierarchy in qyark-mixing $\partial -i\eta$) $V_{CKM} = \begin{bmatrix} -\lambda & 1 - \lambda^2/2 & A\lambda^2 \end{bmatrix}$ $A\lambda^3(1-\rho-in) - A\lambda^2$

b decays

Precision measurements in b rare decays can be sensitive to possible New Physics contribution

• $b \rightarrow s\ell\ell$ processes

- Suppressed in the SM (they can happen only via loop or boxes): small BR ~10-7 - 10-6
- New physics mediators can enter in the loops and modify the amplitudes

• $b \rightarrow c \ell \bar{\nu} \text{ decays}$

- Tree level processes: large BR (few %)
- Clean Standard Model predictions

Neutral Current 8/Z **Charged Current**

b decays @LHCb

<u>JINST 10 P02007</u> <u>airXiv:2008.11556</u>

- LHCb forward detector: 27% of b hadrons produced from pp collision inside acceptance (B^+ , B^0 , B_s , B_c , Λ_b ...)
- Good trigger on displaced tracks (e.g. heavy meson decays), especially for di-muons channel (~90 % efficiency)

Good PID performances from RICH 1,2 , ECAL and Muon Stations

- Electron ID ~ 90 % for ~ 5 % e→h mis-id
- Kaon ID ~ 95 % for ~ 5 % π→K mis-id
- Muon ID ~ 97 % for 1-3 % $\pi \rightarrow \mu$ mis-id
- Excellent tracking performances (~96% efficiency for long tracks)
- $\Delta p / p = 0.5$ % at low momentum
- Impact parameter resolution: (15 +29/ pT[GeV]) μm

b decays

Precision measurements in b rare decays can be sensitive to possible New Physics contribution

• $b \rightarrow s\ell\ell$ processes

- Suppressed in the SM (they can happen only via loop or boxes): small BR ~10-7 - 10-6
- New physics mediators can enter in the loops and modify the amplitudes

b $\rightarrow c \ell \bar{\nu}$ decays

- Tree level processes: large BR (few %)
- Clean Standard Model predictions

Neutral Current 8/Z Charged Current

- Large variety of observables available: • Relative rates of $b \to s\mu^+\mu^-$ and $b \to se^+e^-$, of the form $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)} \stackrel{\text{SM}}{=} 1 \pm \mathcal{O}(10^{-2})$
 - are clean: QCD uncertainties cancels out in the ratio
 are predicted by the SM with very high precision
 - Angular distributions:
 - Study the angular information of the final state particles (e.g. in $B \to K^* \mu^+ \mu^-$)
 - Single branching fractions:
 - e.g. $B \to K^* \mu^+ \mu^-, B_s \to \phi \mu^+ \mu^- \dots$
 - Suffer the most from theory uncertainties

LFU ratios: Electron vs Muon

Relative rates are sensitive to differences between leptons:

- Most electrons emit **bremsstrahlung** photons before the magnet:
 - Need to recover the photon cluster energy
- High occupancy in the electron calorimeter:
 - \blacktriangleright Higher energy thresholds \rightarrow lower statistics
 - Three exclusive trigger categories defined: $\diamond e^{\pm}$ from the B candidate; K^{\pm} from the B candidate; rest of the event
- Worse p resolution, lower PID and tracking efficiencies than for muon

Crucial to contro e/μ differences

$$q^{2} = m^{2}(\ell^{+}\ell^{-}) \quad \text{PRL 122 (2019)}$$

$$p \rightarrow K\mu\mu$$

$$B \rightarrow K\mu$$

$$B \rightarrow K\mu\mu$$

$$B \rightarrow K\mu$$

$$B \rightarrow$$

 \mathbf{b}

10

 10^{4}

 10^{3}

 10^{2}

 MeV/c^2

(24

Candidates /

- $J/\psi \rightarrow \ell \ell$ satisfies lepton universality at 0.4% precision (PDG)
- Reduced systematics due to leptons reconstruction differences
- **Two ingredients:**
 - Double ratio of yields:
 - Fits to the invariant mass of the final state particles
 - Efficiencies of the four decay modes:
 - Computed from simulation (calibrated using data from resonant channels)

• Check:
$$R_{\psi(2S)} = \frac{\mathcal{B}(B \to X)/\psi \to \ell^+ \ell^-}{\mathcal{B}(B \to X)/\psi \to \ell^+ \ell^-)}$$
 and
to check that efficiencies are under cont
• Check: $r_{J/\psi} \equiv \frac{\mathcal{B}(B \to X)/\psi \to \mu^+ \mu^-)}{\mathcal{B}(B \to X)/\psi \to \ell^+ \ell^-)} = 1$
+ absence of trends on any
kinematics variables

Validation of the double ratio procedure (effective cancelation of syst uncertainties)

- Update of $R_{K^{*0}}$ with the full data set
- Ratio measurements with many more decay channels: R_{K_s} , R_{ϕ} , $R_{K\pi\pi}$, \ldots

$B \rightarrow K^* \mu^+ \mu^-$ angular distributions

- The angular distributions of the $B \rightarrow K^* \mu^+ \mu^$ decay is described with $cos(\theta_{\ell})$, $cos(\theta_{K})$, ϕ
- The coefficients F_L , A_{FB} , S_i are sensitive to **New Physics**
- New basis of P'_i operator to reduce form factors uncertainties: e.g. $P'_5 = \frac{S_5}{\sqrt{F_L(1-F_L)}}$

- Recent angular analysis of $B \rightarrow K^{*+}\mu^{+}\mu^{-}$ (9fb⁻¹) showed tension in the SM consistent with that found in

- Global significance of 3.1σ

Angular analysis with electrons: $B \rightarrow K^*ee, B \rightarrow K^+ee$

Coherent pattern?

- Also $b \rightarrow s\mu\mu$ BR are measured to be consistently lower than the SM prediction...
 - Many decays studied: $B^{0(+)} \rightarrow K^{0(+)}\mu^+\mu^-$, $B^{0(+)} \to K^{*0(+)} \mu^+ \mu^-, B^0 \to \mu^+ \mu^-, B_s^0 \to \phi \mu^+ \mu^-$

[JHEP 06 (2014) 133] [JHEP 04 (2017) 142] [JHEP 09 (2015) 179] [JHEP 06 (2015) 115]

- All the anomalies are pointing to the same effects: a shift of C_9 and C_{10} Wilson coefficients
 - New physics is contributing to $b \rightarrow s\ell\ell$ process?
 - Can these effects be attributed to incorrectly estimated charm loop?
 - More measures needed (and coming) to help solving the puzzle

Why not $b \rightarrow s\tau^+\tau^-?$

- taus could be the most sensitive to NP, still largely unexplored
- More complex experimentally
 - Neutrinos in the final state, $m(\tau\tau)$ weak discriminant
 - No 4π coverage at LHCb
- Usually searched with : $\tau \rightarrow a_1(1260)^- \nu_{\tau} \rightarrow a_2(1260)^- \nu_{\tau}$
 - Study intermediate resonance forms c
- Exploit a large variety of MVA techniques Isolation, selection and fit variables
- Difficult choice of control regions to model the background Pseudo-Dalitz plane: define signal and background boxes

Decay	SM prediction	Limits @90% CL		
$B^0 o au au$	$(2.22 \pm 0.19) \cdot 10^{-8}$	$< 1.6 \cdot 10^{-3}$ (LHCb)		
$B_s^0 o au au$	$(7.73 \pm 0.49) \cdot 10^{-7}$	$< 5.2 \cdot 10^{-3}$ (LHCb)		
$B^0 \to K^{*0} \tau \tau$	$(0.98 \pm 0.10) \cdot 10^{-7}$	Ongoing		
$B^+ \to K^+ \tau \tau$	$(1.20 \pm 0.12) \cdot 10^{-7}$	$< 2.3 \cdot 10^{-3}$ (BaBar)		

$$\Rightarrow \rho(770)^0 \pi^- \nu_\tau \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$$

cross-shape

LHC + LHCb upgrades \rightarrow 2x yields for fully hadronic decays!

PRL 120 (2018) 181802

b decays

- Precision measurement in b rare decays can be sensitive to possible New Physics contribution
 - $b \rightarrow s\ell\ell$ processes
 - Suppressed in the SM (they can happen only via loop or boxes): small BR ~10⁻⁷ - 10⁻⁶
 - New physics mediators can enter in the loops and modify the amplitudes

• $b \rightarrow c \ell \bar{\nu} \text{ decays}$

- Tree level processes: large BR (few %)
- Clean Standard Model predictions

Neutral Current

- Complicate final state due to missing energy from neutrinos
- Very busy environment, B momentum unknown
 - Large statistics

- Normalisation and signal channels with

Good signal/background ratio (no semileptonic bkg)

LFU test with different spectator quark

- ▶ τ reconstructed via 'muonic' mode: $\tau^- \rightarrow \mu$

 $R_{J/\psi}=0.$

 2σ above the SM

PRL 120 (2017) 121801

$$R_{J/\psi} = \frac{\mathcal{B}(B_c \to J/\psi \tau \nu)}{\mathcal{B}(B_c \to J/\psi \mu \nu)} \stackrel{\text{SM}}{=} [0.25, 0.28]$$

Interval due to the ch
the model for form fac

Fit variables: $m_{\text{miss}}^2 = (p_{B_c} - p_{J/\psi} - p_{\mu})^2$, $q^2 = (p_{B_c} - p_{J/\psi})^2$, E_{μ}^* in B rest frame, decay time of the B_c

$$.71 \pm 0.17 \pm 0.18$$

Status of LFU $b \rightarrow c\ell\nu$ (@LHCb

 The combination of R_D and R_{D*} measured from LHCb, Belle and BaBar shows a 3σ tensions with the SM

Near future:

- \blacktriangleright Update measurements with Run2 data (3.5 \times B meson + better trigger efficiency)
- Simultaneous measurements of R_{D^*} & R_{D^0} and R_{D^*} & R_{D^+}
- Exploring other channels: R_{Λ_c} , R_{D_s} ... as well as angular observables
- Add latest theory inputs from form factors

17

LFU and LFV

- LFU anomalies observed in $b \rightarrow s\ell\ell$ and $b \rightarrow c\ell\nu$ decays renew the interests for LFV
 - LFUV generally implies LFV
- Same models (e.g. Leptoquark) can explain both LFU ratios and lead to sizeable LFV:

$$\mathcal{B}(B \to K \mu^{\pm} \tau^{\mp}) \simeq 2 \cdot 10^{-8} \left(1 \right)$$

- Measures of rates for such decays can help to constrain **Beyond Standard Model theories**
 - NP predicted rates accessible to current experimental reach

 $(1-R_K)$ 0.23 arXiv 1503.01084

4.0 Full fit $\Delta R_{\kappa} = -0.3$ $---- \Delta R_{\kappa} = -0.2$ Excluded at 90% CL × (ב ^{2.4} + Ъ 1.6 ¥ $\mathcal{B}(B^+$ 0.8 0.0+ 0.0 1.5 6.0 3.0 4.5 $\mathcal{B}(\tau \rightarrow \mu \gamma) \times 10^8$

LFV with taus

$B^+ \to K^+ \mu^- \tau^+$

- Use $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$
- New technique for τ reconstruction: use B^+ from B_{s2}^{*0}
 - B^+ flight direction and energy from mass constrains and PV and $K^+\mu^-$ vertex info
 - \blacktriangleright K⁻ momenta (two-fold ambiguity)
 - Resolve the ambiguity requiring missing energy > τ track energy (75% of confidence)
- BDT against combinatorial background
 - Control sample adding a prompt kaon of the same sign as the one in the $K^+\mu^-$ pair (SSK)
- Fit to the missing mass distribution in BDT bins

$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 4.5 \times 10^{-5} \text{ at } 95\% \text{ CL}$

Comparable with the world-best limit

 $B^0_{(s)} \to \tau^{\pm} \mu^{\mp}$

- Use $\tau^- \rightarrow \pi^- \pi^+ \pi^- (\pi^0) \nu_{\tau}$

- *B* mass analytically reconstructed from kinematics constrains
- Background proxy from same-sign data
 - BDT anti-combinatorial + isolation-based BDT
 - Decay time cut to reduce partially reconstructed decays
- 'Final' BDT: Same Sign data vs MC
- Simultaneous fit in bins of BDT and B mass

Most stringent --> First limit -->

$$\mathcal{B}(B^0 o au^{\pm} \mu^{\mp}) < 1.4$$

 $\mathcal{B}(B^0_s o au^{\pm} \mu^{\mp}) < 4.2$

PRL 123 (2019) 211801

LFV with *e*, *µ*

- $D^+_{(s)} \to h^{\pm} \ell^+ \ell^{\mp}$, with $\ell = e, \mu$ $h = \pi, K$
 - Normalisation $D^+ \to \pi^+ \phi (\to \ell^+ \ell^-)$
 - Fit to the 3-body invariant mass
 - Limits set between 1.4×10^{-8} and 6.4×10^{-6}

channel	expected	observed	
$\mathcal{B}(B^0_s \to e^{\pm} \mu^{\mp})$	$5.0(3.9) \times 10^{-9}$	$6.3(5.4) \times 10^{-9}$	
$\mathcal{B}(B^0 \to e^{\pm} \mu^{\mp})$	$1.2(0.9) \times 10^{-9}$	$1.3(1.0) \times 10^{-9}$	

world-best limits

Conclusion & outlook

- Flavour physics is one of the most interesting area for NP searches
 - Flavour Anomalies can be confirmed or disproved in very near future
- LHCb is going to give its contribution!
 - Several LHCb measurements to be updated with the full dataset
 - Run3 is about to start (~3 times data in 3 years)
 - LHCb detector undergoing staged upgrades
 - Replaced vertex, tracking detectors: Better vertex resolution
 - Removed hardware trigger: Better efficiency
- Belle II work will be fundamental for NP searches (next talk)

Reduce background from charged and neutral tracks **Electron modes more accessible**

Reduce statistical +

data-driven models

uncertainties

LHCb upgrade - Phase I

- New Vertex Detector
 - Pixel silicon detector
- Trigger-less readout
 - Software HLT on GPU
- New tracking stations:
 - Scintillating Fibers (SciFi) and Silicon micro-strips (UT)
- RICH: New PMTs + new electronics
- Calorimeters
 - PMT gain reduced by a factor 5, FEE redeveloped
- Muon system
 - FEE redeveloped

LFV and LFU prospects

scenario	$C_9^{ m NP}$	$C_{10}^{ m NP}$	C'_9	C'_{10}
I	-1.4	0	0	0
II	-0.7	0.7	0	0
III	0	0	0.3	0.3
IV	0	0	0.3	-0.3

Fig. 49: Total experimental sensitivity, including systematics, at LHCb to the P'_5 angular observable in the SM, Scenarios I and II for the Run 3 (left) and the Upgrade II (right) data sets. The sensitivity is computed assuming that the charm-loop contribution is determined from the data.

Fig. 50: Expected sensitivity to the Wilson coefficients C'_9 and C'_{10} from the future LHCb analysis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay. The ellipses correspond to 3σ contours for the SM, Scenario III and Scenario IV for the Run 3 (left) and the Upgrade II (right) data sets.

Why not
$$b \to s\tau^+\tau^-$$

Decay vertex position reconstructed from pions tracks

• Minimally corrected mass: $M_c = \sqrt{M_{vis}^2}$

Hadronic decays can be reconstructed analytically

• Impose the constraint $m_{\tau} = 1776.86$ MeV

•
$$|\vec{p}_{\tau}| = \frac{(m_{\tau}^2 + m_{3\pi}^2)|\vec{p}_{3\pi}|\cos\theta \pm E_{3\pi}\sqrt{(m_{\tau}^2 - m_{3\pi}^2)^2 - 4m_{\tau}^2|\vec{p}_{3\pi}|^2\sin^2\theta}}{2(E_{3\pi}^2 - |\vec{p}_{3\pi}|^2\cos^2\theta)}$$

- Momentum direction from tau and B decay vertices
- Refit of the decay chain applying mass constraints:
 - Improve mass resolution
 - Need to initialize the fitter, analytic reconstruction can be used
 - Fitter can fail, reduced efficiency

$$+ p_{vis}^2 \sin^2 \theta + p_{vis} \sin \theta$$

Rare *b* decays

- contribution
- They can be described by an effective theory (low energy process):

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i \mathcal{C}_i \mathcal{O}_i$$

$$C_i = C_i^{SM} + C_i^{NP}$$

Effective coupling: 'Wilson Coefficient'

Local operators O_i

NP can introduce new operators or modify the Wilson coefficients, depending on its structure

Precision measurement in b rare decays can be sensitive to possible New Physics

• four final-state particles \rightarrow three decay angles ($\theta_{\kappa}, \theta_{\rho}, \phi$) Illy described by eight independent $\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}q^2\,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K \bigg]$ $+ rac{1}{4}(1 - F_{ m L}) \sin^2 heta_K \cos 2 heta_l$ $- rac{F_{ m L}\cos^2 heta_K\cos2 heta_l+S_3\sin^2 heta_K\sin^2 heta_l\cos2\phi}{1+S_3\sin^2 heta_K\sin^2 heta_l\cos2\phi}$ $+ S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$ $+ \frac{4}{3}A_{\mathrm{FB}}\sin^2 heta_K\cos heta_l + S_7\sin2 heta_K\sin heta_l\sin\phi$ $+ S_8 \sin 2 heta_K \sin 2 heta_l \sin \phi + S_9 \sin^2 heta_K \sin^2 heta_l \sin 2\phi$ underlying Wilson coefficients but uncertainties from hadronic form factors define combinations of F₁ and S₁ in which

Heb Angular Observables in **B**⁰

form factors cancel to leading order, e.g.

The flavour puzzle

$$\mathscr{L}_{\rm SM} = \mathscr{L}_{\rm gauge}(\psi_i,$$
$$\mathscr{L}_{\rm gauge} = \sum_{a} \frac{-1}{4g_a^2} (F_{\mu\nu})^2 + \sum_{i=1}^{3} \bar{\psi}_i i \mathcal{D}, \psi_i$$

3 identical replica (i = 1,2,3) of the basic fermion family differing only in mass

Gauge interactions are the same for all the families

- Why 3 generations?
- What is the origin of their different masses?
- What is the origin of the hierarchy in quark-mixing?

$$\begin{split} A_{a}) &+ \mathscr{L}_{\mathrm{Higgs}}(\psi_{i}, A_{a}, H) \\ & \mathscr{L}_{\mathrm{Higgs}} = \mathscr{L}_{H} + \mathscr{L}_{\mathrm{Yukawa}} \\ & \text{Only Yukawa interaction distinguishes the families} \\ & \bar{Q}_{L}{}^{i} Y_{D}{}^{ik} d_{R}{}^{k} \mathrm{H} + h.c. \to \bar{d}_{L}{}^{i} M_{D}{}^{ik} d_{R}{}^{k} + ... \end{split}$$

sector: $\bar{Q}_L^{\ i} Y_U^{\ ik} u_R^{\ k} H_c + h.c. \rightarrow \bar{u}_L^{\ i} M_U^{\ ik} u_R^{\ k} + ...$

Only one mass matrix at time can be diagonalised (for gauge flavour invariance)

 $M_D = \operatorname{diag}(m_d, m_s, m_b)$ $M_U = V^+ \times \operatorname{diag}(m_u, m_c, m_t)$

V_CKM appears in chargedcurrent gauge interaction (mixing u and d)

