The $(g-2)_{\mu}$ in the Standard Model: calculation of hadronic contributions

Gilberto Colangelo

TAU2021, Indiana University (virtual) Sept 27-Oct 1, 2021

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_\mu$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints Contribution of axial vectors

Conclusions and Outlook

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_\mu$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints Contribution of axial vectors

Conclusions and Outlook

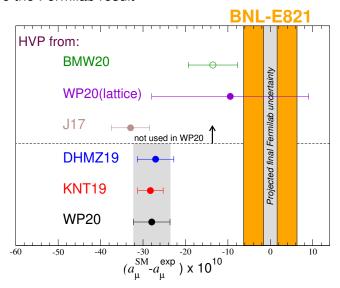
Present status of $(g-2)_{\mu}$, experiment vs SM

$$a_{\mu}(\textit{BNL}) = 116\,592\,089(63) \times 10^{-11}$$
 $a_{\mu}(\textit{FNAL}) = 116\,592\,040(54) \times 10^{-11}$ $a_{\mu}(\textit{Exp}) = 116\,592\,061(41) \times 10^{-11}$

→ talk J. Stapleton

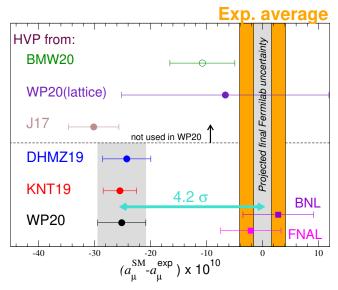
Present status of $(g-2)_{\mu}$, experiment vs SM

Before the Fermilab result



Present status of $(g-2)_{\mu}$, experiment vs SM

After the Fermilab result



Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, udsc)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\sf exp} - a_{\mu}^{\sf SM}$	251(59)

Contribution	Value ×10 ¹¹
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice BMW(20), udsc)	7075(SS)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, uds)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 061 (41)
Difference: $\Delta a_{\mu} := a_{\mu}^{\sf exp} - a_{\mu}^{\sf SM}$	251(59)

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative

Steering Committee:

GC

Michel Davier (vice-chair)

Simon Eidelman

Aida El-Khadra (chair)

Martin Hoferichter

Christoph Lehner (vice-chair)

Tsutomu Mibe (J-PARC E34 experiment)

(Andreas Nyffeler until summer 2020)

Lee Roberts (Fermilab E989 experiment)

Thomas Teubner

Hartmut Wittig

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative Workshops:

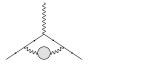
- First plenary meeting, Q-Center (Fermilab), 3-6 June 2017
- HVP WG workshop, KEK (Japan), 12-14 February 2018
- HLbL WG workshop, U. of Connecticut, 12-14 March 2018
- Second plenary meeting, Mainz, 18-22 June 2018
- Third plenary meeting, Seattle, 9-13 September 2019
- Lattice HVP workshop, virtual, 16-20 November 2020
- Fourth plenary meeting, KEK (virtual), 28 June-02 July 2021

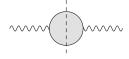
White Paper executive summary (my own)

- QED and EW known and stable, negligible uncertainties
- ► HVP dispersive: consensus number, conservative uncertainty (KNT19, DHMZ19, CHS19, HHK19)
- ► HVP lattice: consensus number, $\Delta a_{\mu}^{\text{HVP,latt}} \sim 5 \, \Delta a_{\mu}^{\text{HVP,disp}}$ (Fermilab-HPQCD-MILC18,20, BMW18, RBC/UKQCD18, ETM19,SK19, Mainz19, ABTGJP20)
- ► HVP BMW20: central value \rightarrow discrepancy $< 2\sigma$; $\Delta a_{\mu}^{\text{HVP},\text{BMW}} \sim \Delta a_{\mu}^{\text{HVP},\text{disp}}$ published 04/21 \rightarrow not in WP
- ► HLbL dispersive: consensus number, w/ recent improvements $\Rightarrow \Delta a_{\mu}^{\text{HLbL}} \sim 0.5 \Delta a_{\mu}^{\text{HVP}}$
- ► HLbL lattice: single calculation, agrees with dispersive $(\Delta a_{\mu}^{\text{HLbL,latt}} \sim 2 \Delta a_{\mu}^{\text{HLbL,disp}})$ \rightarrow final average (RBC/UKQCD20)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- ▶ Hadronic vacuum polarization (HVP) is $\mathcal{O}(\alpha^2)$, dominates the total uncertainty, despite being known to < 1%



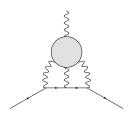


- ▶ unitarity and analyticity ⇒ dispersive approach
- ▶ ⇒ direct relation to experiment: $\sigma_{tot}(e^+e^- \rightarrow hadrons)$
- ► e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
- alternative approach: lattice, becoming competitive

(BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)

Theory uncertainty comes from hadronic physics

- Hadronic contributions responsible for most of the theory uncertainty
- ▶ Hadronic vacuum polarization (HVP) is $\mathcal{O}(\alpha^2)$, dominates the total uncertainty, despite being known to < 1%
- ▶ Hadronic light-by-light (HLbL) is $\mathcal{O}(\alpha^3)$, known to \sim 20%, second largest uncertainty (now subdominant)



- earlier: model-based calculations
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- ► lattice QCD is becoming competitive

(Mainz, RBC/UKQCD)

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

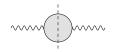
Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_{\mu}$ Dispersive approach to the hadronic light-by-light tenso Short-distance constraints Contribution of axial vectors

Conclusions and Outlook

HVP contribution: Master Formula

Unitarity relation: simple, same for all intermediate states (including isospin breaking → talk K. Maltman)



$${
m Im} ar\Pi(q^2) \propto \sigma(e^+e^- o {
m hadrons}) = \sigma(e^+e^- o \mu^+\mu^-) R(q^2)$$
(possible use of au -data? o talk J.A. Miranda Hernandez)

Analyticity
$$\left[\bar{\Pi}(q^2) = rac{q^2}{\pi} \int ds rac{\mathrm{Im}\bar{\Pi}(s)}{s(s-q^2)}
ight] \Rightarrow$$
 Master formula for HVP

Bouchiat, Michel (61)

$$\Rightarrow \qquad a_{\mu}^{
m hvp} = rac{lpha^2}{3\pi^2} \int_{s_{th}}^{\infty} rac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$\kappa^+\kappa^-$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_{S}K_{L}$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7, \infty)\mathrm{GeV}$	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{ ext{HVP, LO}}$	694.0(1.0)(3.5)(1.6)(0.1) $_{\psi}$ (0.7) $_{\mathrm{DV+QCD}}$	692.8(2.4)	1.2

update on c and b contribution: \rightarrow talk P.D. Kennedy

2π : comparison with the dispersive approach

The 2π channel can itself be described dispersively \Rightarrow more constrained theoretically

Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18)

→ talk P. Stoffer

Energy range	ACD18	CHS18	DHMZ19	KNT19
≤ 0.6 GeV ≤ 0.7 GeV < 0.8 GeV		110.1(9) 214.8(1.7) 413.2(2.3)	110.4(4)(5) 214.7(0.8)(1.1) 414.4(1.5)(2.3)	108.7(9) 213.1(1.2) 412.0(1.7)
≤ 0.0 GeV ≤ 0.9 GeV ≤ 1.0 GeV		479.8(2.6) 495.0(2.6)	481.9(1.8)(2.9) 497.4(1.8)(3.1)	478.5(1.8) 493.8(1.9)
[0.6, 0.7] GeV [0.7, 0.8] GeV [0.8, 0.9] GeV [0.9, 1.0] GeV		104.7(7) 198.3(9) 66.6(4) 15.3(1)	104.2(5)(5) 199.8(0.9)(1.2) 67.5(4)(6) 15.5(1)(2)	104.4(5) 198.9(7) 66.6(3) 15.3(1)
$ \leq 0.63 \text{GeV} \\ [0.6, 0.9] \text{GeV} \\ \left[\sqrt{0.1}, \sqrt{0.95} \right] \text{GeV} $	132.9(8)	132.8(1.1) 369.6(1.7) 490.7(2.6)	132.9(5)(6) 371.5(1.5)(2.3) 493.1(1.8)(3.1)	131.2(1.0) 369.8(1.3) 489.5(1.9)

Combination method and final result

Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ▶ 1/2 difference DHMZ−KNT (or BABAR−KLOE in the 2π channel, if larger) is added to the uncertainty

Final result:

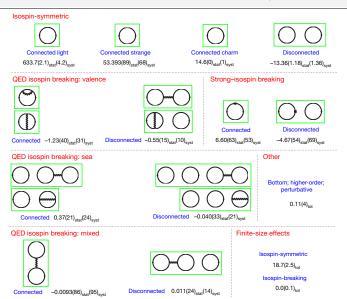
$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$$

= $693.1(4.0) \times 10^{-10}$

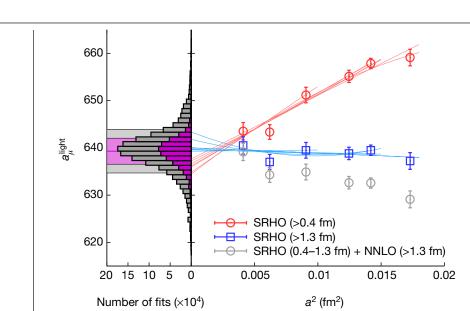
State-of-the-art lattice calculation of $a_{\mu}^{HVP, LO}$ based on

- current-current correlator, summed over all distances, integrated in time with appropriate kernel function
- using staggered fermions on an $L \sim 6$ fm lattice ($L \sim 11$ fm used for finite volume corrections)
- at (and around) physical quark masses
- including isospin-breaking effects

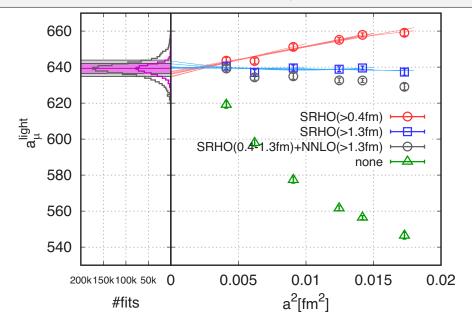
Borsanyi et al. Nature 2021



Borsanyi et al. Nature 2021

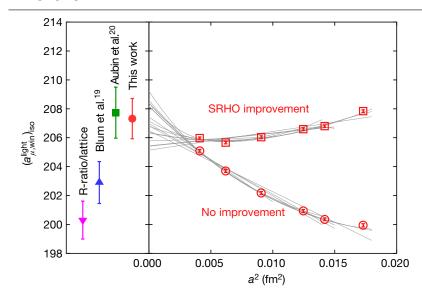


Borsanyi et al. Nature 2021

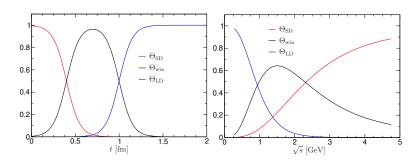


Borsanyi et al. Nature 2021

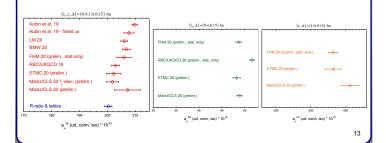
Article



Weight functions for window quantities



f	$a_{\mu}^{SD}(f)\cdot 10^{10}$	$a_{\mu}^W(f) \cdot 10^{10}$	$a_{\mu}^{LD}(f)\cdot 10^{10}$
ud	48.2 (0.8)	202.2 (2.6)	382.5 (11.7)



D. Giusti, talk at Lattice 2021

Consequences of the BMW result

A shift in the value of $a_{\mu}^{\text{HVP, LO}}$ would have consequences:

- $ightharpoonup \Delta a_{\mu}^{\mathsf{HVP, LO}} \quad \Leftrightarrow \quad \Delta \sigma(e^+e^- \to \mathsf{hadrons})$
- ► $\Delta \alpha_{\rm had}(M_Z^2)$ is determined by an integral of the same $\sigma(e^+e^- \to {\rm hadrons})$ (more weight at high energy)
- ► changing $a_{\mu}^{\text{HVP, LO}}$ necessarily implies a shift in $\Delta \alpha_{\text{had}}(M_Z^2)$: size depends on the energy range of $\Delta \sigma(e^+e^- \to \text{hadrons})$
- ▶ a shift in $\Delta \alpha_{had}(M_Z^2)$ has an impact on the EW-fit

Passera, Marciano, Sirlin (08)

▶ to save the EW-fit $\Delta\sigma(e^+e^- \to {\rm hadrons})$ must occur below \sim 1 (max 2) GeV

Crivellin, Hoferichter, Manzari, Montull (20)/Keshavarzi, Marciano, Passera, Sirlin (20)/Malaescu, Schott (20)

or the need for BSM physics would be moved elsewhere

Changes in $\sigma(e^+e^- \to \text{hadrons})$ below 1 GeV?

- ▶ Below 1 2 GeV only one significant channel: $\pi^+\pi^-$
- Strongly constrained by analyticity and unitarity $(F_{\pi}^{V}(s))$
- $F_{\pi}^{V}(s)$ parametrization which satisfies these \Rightarrow small number of parameters GC, Hoferichter, Stoffer (18)
- $ightharpoonup \Delta a_{\mu}^{
 m HVP,\,LO} \Leftrightarrow
 m shifts \ in \ these \ parameters \ analysis \ of \ the \ corresponding \ scenarios \ GC, \ Hoferichter, \ Stoffer (21)$
- ▶ possible that all the changes in $\sigma(e^+e^- \to \text{hadrons})$ only occur below 1 GeV? $\to \text{talk P. Stoffer}$

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

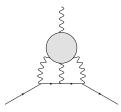
Hadronic light-by-light contribution to $(g-2)_{\mu}$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints Contribution of axial vectors

Conclusions and Outlook

Calculating the HLbL contribution

The HLbL contribution is a very complex quantity

4-point function of em currents in QCD



early on, it has been calculated with models

Hayakawa-Kinoshita-Sanda/Bijnens-Pallante-Prades (96), Knecht, Nyffeler (02), Melnikov, Vainshtein (04)

a data-driven approach, like for HVP, has only recently been developed and used

GC, Hoferichter, Procura, Stoffer=CHPS (14,15,17), Hoferichter, Hoid, Kubis, Leupold, Schneider (18)

lattice QCD is becoming competitive

RBC/UKQCD (20), Mainz (21)

Different model-based evaluations of HLbL

J	leger	lehr	ner-l	N	yfl	е	ler	200	19	

Contribution	BPaP(96)	HKS(96)	KnN(02)	MV(04)	BP(07)	PdRV(09)	N/JN(09)
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	-	114±13	99±16
π, K loops	-19 ± 13	-4.5 ± 8.1	_		_	-19 ± 19	-19 ± 13
" " + subl. in N_c	_	_	_	0 ± 10	_	_	_
axial vectors	2.5 ± 1.0	1.7±1.7	_	22 ± 5	_	15±10	22 ± 5
scalars	-6.8 ± 2.0	_	_	_	_	-7 ± 7	-7 ± 2
quark loops	21±3	9.7±11.1	_	_	_	2.3	21±3
total	83±32	89.6±15.4	80±40	136±25	110±40	105±26	116±39

Legenda: B=Bijnens Pa=Pallante P=Prades H=Hayakawa K=Kinoshita S=Sanda Kn=Knecht N=Nyffeler M=Melnikhov V=Vainshtein dR=de Rafael J=Jegerlehner

- large uncertainties (and differences among calculations) in individual contributions
- pseudoscalar pole contributions most important
- second most important: pion loop, i.e. two-pion cuts (Ks are subdominant)
- heavier single-particle poles decreasingly important

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- ► makes a data-driven evaluation possible (in principle)
 → talks A. Denig and D. Moricciani
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.

Advantages of the dispersive approach

- model independent
- unambiguous definition of the various contributions
- ► makes a data-driven evaluation possible (in principle)
 → talks A. Denig and D. Moricciani
- if data not available: use theoretical calculations of subamplitudes, short-distance constraints etc.
- First attempts: GC, Hoferichter, Procura, Stoffer (14), Pauk, Vanderhaeghen (14)

[Schwinger sum rule: Hagelstein, Pascalutsa (17)]

why hasn't this been adopted before?

The HLbL tensor

HLbL tensor:

$$\Pi^{\mu\nu\lambda\sigma}=i^3\!\int\! dx\!\int\! dy\!\int\! dz\; e^{-i(x\cdot q_1+y\cdot q_2+z\cdot q_3)}\langle 0|T\big\{j^\mu(x)j^\nu(y)j^\lambda(z)j^\sigma(0)\big\}|0\rangle$$

$$q_4 = k = q_1 + q_2 + q_3$$
 $k^2 = 0$

General Lorentz-invariant decomposition:

$$\Pi^{\mu
u\lambda\sigma}=g^{\mu
u}g^{\lambda\sigma}\Pi^1+g^{\mu\lambda}g^{
u\sigma}\Pi^2+g^{\mu\sigma}g^{
u\lambda}\Pi^3+\sum_{i,j,k,l}q_i^\mu q_j^
u q_k^\lambda q_l^\sigma \Pi^4_{ijkl}+\dots$$

consists of 138 scalar functions $\{\Pi^1,\Pi^2,\ldots\}$, but in d=4 only 136 are linearly independent

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))

 \Rightarrow Apply the Bardeen-Tung (68) method+Tarrach (75) addition

Gauge-invariant hadronic light-by-light tensor

Applying the Bardeen-Tung-Tarrach method to $\Pi^{\mu\nu\lambda\sigma}$ one ends up with:

43 basis tensors (BT)

in d = 4: 41=no. of helicity amplitudes

▶ 11 additional ones (T)

to guarantee basis completeness everywhere

- of these 54 only 7 are distinct structures
- all remaining 47 can be obtained by crossing transformations of these 7: manifest crossing symmetry
- ▶ the dynamical calculation needed to fully determine the HLbL tensor concerns these 7 scalar amplitudes

$$\Pi^{\mu\nu\lambda\sigma} = \sum_{i=1}^{54} T_i^{\mu\nu\lambda\sigma} \Pi_i$$

HLbL contribution: Master Formula

$$a_{\mu}^{\mathrm{HLbL}} = \frac{2\alpha^{3}}{48\pi^{2}} \int_{0}^{\infty} dQ_{1} \int_{0}^{\infty} dQ_{2} \int_{-1}^{1} \sqrt{1-\tau^{2}} \sum_{i=1}^{12} T_{i}(Q_{1}, Q_{2}, \tau) \bar{\Pi}_{i}(Q_{1}, Q_{2}, \tau)$$

 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta:

$$Q_1 \cdot Q_2 = |Q_1||Q_2|\tau$$

The integration variables $Q_1:=|Q_1|,\ Q_2:=|Q_2|.$ CHPS (15)

- $ightharpoonup T_i$: known kernel functions
- Π̄_i are amenable to a dispersive treatment: imaginary parts are related to measurable subprocesses

"Amenable to a dispersive treatment"

$$\mu^{2}$$
 $(\alpha\beta...ij...)$ λ^{2} λ + crossed diagrams λ^{2} λ^{2}

$$\operatorname{Im} \Pi^{\mu\nu\lambda\sigma} = \sum_{\alpha\beta...,ij...} \Gamma^{\mu\nu\alpha\beta...}_{ij...} \Gamma^{\lambda\sigma\alpha\beta...}_{ij...} \star$$

- ▶ projection on the BTT basis for $\Pi^{\mu\nu\lambda\sigma}$ ⇒ DR for Π_i
- result for $\Pi^{\mu\nu\lambda\sigma}$ (and a_{μ}) depends on the basis choice unless a set of sum rules is satisfied
- even for single-particle intermediate states this is in general not the case, other than for pseudoscalars

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0 , η , η' -poles π , K -loops/boxes S -wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors u, d, s-loops / short-distance	_ _ 15(10) _	22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} -1(3) 6(6) 15(10)
c-loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

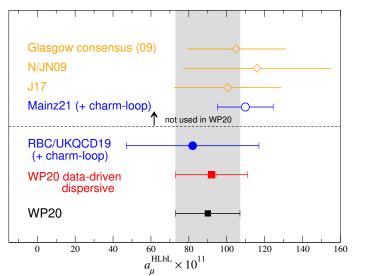
significant reduction of uncertainties in the first three rows

CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

ightarrow talk P. Sánchez-Puertas

- 1 − 2 GeV resonances affected by basis ambiguity and large uncertainties [scalars: → talk I. Danilkin, Danilkin, Hoferichter, Stoffer (21)]
- asymptotic region recently addressed, Melnikov, Vainshtein (04), Nyffeler (09), WP still work in progress
 Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)

Situation for HLbL



Recent activity on SDCs (mainly post WP)

calculation of (non-)perturbative corrections to the OPE

Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20,21)

→ talk A. Rodríguez-Sánchez

tower of excited pseudoscalars (Regge model)

GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

tower of axial-vectors (holographic QCD model)

Leutgeb, Rebhan (19,21), Cappiello, Catà, D'Ambrosio, Greynat, Iyer (20)

solution based on interpolants

Lüdtke, Procura (20)

general considerations, comparison of model solutions

Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

Recent activity on SDCs (mainly post WP)

calculation of (non-)perturbative corrections to the OPE

Bijnens, Hermansson-Truedsson, Laub, Rodríguez-Sánchez (20,21)

→ talk A. Rodríguez-Sánchez

tower of excited pseudoscalars (Regge model)

GC, Hagelstein, Hoferichter, Laub, Stoffer (19)

tower of axial-vectors (holographic QCD model)

Leutgeb, Rebhan (19,21), Cappiello, Catà, D'Ambrosio, Greynat, Iyer (20)

solution based on interpolants

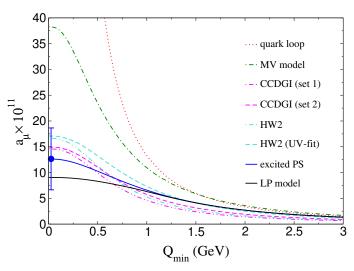
Lüdtke, Procura (20)

general considerations, comparison of model solutions

Knecht (20), Masjuan, Roig, Sánchez-Puertas (20), GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

Numerical comparison of LSDC solutions for a_{μ}^{HLbL}

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)



Comments on the contribution of axial vectors

- like all resonances besides pseudoscalars, axial vectors affected by basis ambiguity
- model calculations: large spread, ⇒ axial-vector contributions might potentially be large (transverse SDC) a_u^{axials}[a₁, f₁, f'₁]

model-independent treatment of axials particularly urgent

Recent work on axial-vector contributions

New basis free of kinematic singularities for axials

GC, Hagelstein, Hoferichter, Laub, Stoffer (21)

Asymptotic behaviour of TFF of axial vectors

Hoferichter, Stoffer (20)

 Analysis of phenomenological and asymptotic constraints on a VMD model for TFF of axial vectors

Zanke, Hoferichter and Kubis (21)

▶ hQCD models with $m_q \neq 0$, including phenomenological and asymptotic constraints

Large contributions confirmed. hQCD models successful so far \Rightarrow this needs to be understood

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution to $(g-2)_{\mu}$

Hadronic light-by-light contribution to $(g-2)_\mu$ Dispersive approach to the hadronic light-by-light tensor Short-distance constraints Contribution of axial vectors

Conclusions and Outlook

Conclusions

- The WP provides the current status of the SM evaluation of $(g-2)_{\mu}$: 4.2 σ discrepancy with experiment (w/ FNAL)
- Evaluation of the HVP contribution based on the dispersive approach: 0.6% error ⇒ dominates the theory uncertainty
- Recent lattice calculation [BMW(20)] has reached a similar precision but differs from the dispersive one (=from e⁺e[−] data).
 If confirmed ⇒ discrepancy with experiment \(\subseteq \text{below 2} \sigma\$
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(20), Mainz(21)] agree with it

Outlook

- ► The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the SM theory/data side:
 - ► HVP data-driven: Other e⁺e⁻ experiments are available or forthcoming: SND, BaBar, Belle II, BESIII, CMD3 ⇒ Error reduction MuonE will provide an alternative way to measure HVP
 - ► HVP lattice: More calculations w/ precision ~ BMW are awaited Difference to data-driven evaluation must be understood
 - ► HLbL data-driven: goal of ~ 10% uncertainty within reach
 - ► HLbL lattice: RBC/UKQCD ⇒ similar precision as Mainz. Good agreement with data-driven evaluation.

Future: Muon g - 2/EDM experiment @ J-PARC

