Search for tau LFV/LNV decays at Belle

Tau2021 (ONLINE)

Kenta Uno

Niigata university

1

Introduction

- Two results using tau decays at Belle
 - Tau LFV: $\tau \rightarrow \ell \gamma \ (\ell = e, \mu)$ <u>K.Uno et al. arXiv:2103.12994</u> accepted by JHEP
 - Tau LNV/BNV: $\tau \rightarrow p\ell\ell' \ (\ell^{(\prime)} = e, \mu) \frac{\text{D.Sahoo et al.}}{\frac{\text{PhysRevD.102.111101}}{\text{PhysRevD.102.111101}}$

Belle experiment

- Operation: 1999 2010
- Collision: 8 GeV e^- , 3.5 GeV e^+
 - $\sigma(ee \rightarrow bb) \sim 1.1 \text{ nb}, \sigma(ee \rightarrow \tau\tau) \sim 0.9 \text{ nb} \rightarrow \tau \text{ factory!}$
 - Possible to use all $\Upsilon(nS)$ resonance data (n = 1..5)
 - Possible to use off resonance data (~100 fb⁻¹)

\rightarrow In total, 9.1×10⁸ $N_{\tau\tau}$ (Ref. BaBar: 4.8×10⁸ $N_{\tau\tau}$)

Search for tau LFV decays $\tau \rightarrow \ell \gamma$

Motivation: $\tau \rightarrow \ell \gamma \ (\ell = e, \mu)$ Charged Lepton Flavor Violation (CLFV)

• Small probability via neutrino oscillations: $B(\tau \rightarrow \mu \gamma) < O(10^{-40})$

Eur.Phys.J.C8,3(1999)

 $\tau \longrightarrow \ell(\mu \text{ or } e)$

• $\tau \rightarrow \ell \gamma$: Sizeable probability in several models

New physics (eg. SUSY) $_\gamma$	Model	Reference
	$SM + \nu$ Oscillations	EPJ C8 (1999) 513
$ ilde{ au}$	$SM+heavy\;Maj\; u_R$	PRD 66 (2002) 034008
	Non universal Z'	PLB 547 (2002) 252
, and the second s	SUSY SO(10)	PRD 68 (2003) 033012
$\int \tilde{v}^0 $ $\downarrow \mu$	mSUGRA + seesaw	PRD 66 (2002) 115013
τ (λ) μ	SUSY Higgs	PLB 566 (2003) 217
$1 \longrightarrow 1 \longrightarrow$		

Observation of CLFV \rightarrow clear signature of new physics

 $\tau \rightarrow \ell \gamma$: Sensitive to several models!

Past searches for $\tau \rightarrow \ell \gamma$

90%CL	Belle	BaBar
Luminosity	535 fb ⁻¹	516 fb ⁻¹
$N_{ au au}$	4.8×10^{8}	4.8×10^{8}
$B(\tau ightarrow \mu \gamma)$	4.5×10^{-8}	4.4×10^{-8}
$B(\tau ightarrow e \gamma)$	12×10^{-8}	3.3×10^{-8}
Reference	<u>PLB (2008)666</u>	PRL (2010)021802

We updated the results of a search for $\tau \rightarrow \ell \gamma$

- Increased $N_{\tau\tau}$: $4.8 \times 10^8 \rightarrow 9.1 \times 10^8$ (535 fb⁻¹ $\rightarrow 988$ fb⁻¹)
- Introduced new observables and improved selection
- Calibrated photon energy resolution using $ee \rightarrow \mu\mu\gamma$

Photon energy resolution calibration

Revised the photon-energy resolution calibration

- Use radiative muon event ($ee \rightarrow \mu\mu\gamma$)
 - Cover a broad energy range
- Goal
- Measure the energy resolution in data et
- Calibrate it in simulation to agree with that in data

Evaluation

• Subtract E_{recoil} from E_{γ} for data and simulation

•
$$E_{\text{recoil}} = E_{\text{beam}} - E_{\mu^-} - E_{\mu^+}$$

• E_{γ} : measured in the calorimeter

Energy range: 1 GeV – 6 GeV NEW!

Calibrated resolution agrees with that in data

Analysis approach Signal-side: $N_{\ell} = 1$ and $N_{\gamma} = 1$

 $E_{\rm beam}^{\rm CM}$

Tag-side: 1 prong τ (Eg. $\ell \nu \nu, \pi \nu, \rho \nu$)

Signal region definition

•
$$M_{\rm bc} = \sqrt{\left(E_{\rm beam}^{\rm CM}\right)^2 - \left(p_{\ell\gamma}^{\rm CM}\right)^2}$$

•
$$\Delta E/\sqrt{s} = (E_{\ell\gamma}^{\rm CM} - E_{\rm beam}^{\rm CM})/\sqrt{s}$$

Background component

- $\tau \rightarrow \ell \nu \nu + ISR \gamma$ or beam bkg
- $ee \rightarrow \mu\mu/ee$ + ISR γ or beam bkg

Signal extraction

Perform UEML fit to the SR
 Unbinned Extended Maximum Likelihood

Event Selection 1

Several observables are used: eg. Total energy, missing angle

Eg. Total energy in CM frame (E_{tot}^{CM}/\sqrt{s})

- $\tau \to \ell \gamma$: $N_{\nu} > 0$ in tag-side, $ee \to \ell \ell \gamma$: $N_{\nu} = 0$
- → Signal distribution depends on tag-side decays ($\tau \rightarrow \ell \nu \nu, \pi \nu, \rho \nu$) NEW!

Optimized selection per channel: ℓ, π, ρ channel

0.3 0.4 0.5 0.6 0.7

E^{CM}/√s

9

X All selection criteria are optimized to maximize search sensitivity

Good separation between signal and background 10

Luminosity: 988 fb⁻¹ : $9.1 \times 10^8 N_{\tau\tau}$

Upper limits at 90% CL

Upper limit on branching fraction at 90% CL

<i>B</i> ×10 ^{−8} at 90% CL	BaBar $N_{ au au}=4.8{ imes}10^8$		Belle $N_{\tau\tau} = 4.8 \times 10^8$		Belle $N_{ au au} = 9.1 \times 10^8$	
	Exp	Obs	Exp	Obs	Exp	Obs
$B(\tau ightarrow \mu \gamma)$	8.2	4.4	8.0	4.5	4.9	4.2
$B(\tau ightarrow e \gamma)$	9.8	3.3	12	12	6.5	5.6

- Expected limits: factor 1.5 1.7 improved
- Observed limits, $\tau \rightarrow \mu \gamma$: Most stringent limit to the date

Search for tau LNV/BNV decays $\tau \rightarrow p\ell\ell'$

Motivation

Matter-antimatter asymmetry in nature

- Need Baryon number violation (BNV) Sakharov's condition
- BNV in charged lepton decays → <u>lepton number violation</u>

Analysis approach Signal-side: Reconstruct p, ℓ, ℓ' Tag-side: 1prong τ decays Signal region (SR) definition

$$M_{\rm rec} = \sqrt{\left(E_{p\ell\ell'}\right)^2 - \left(\vec{p}_{p\ell\ell'}\right)^2}$$

$$\Delta E = (E_{p\ell\ell'}^{\rm CM} - E_{\rm beam}^{\rm CM})$$

Background component

• $\tau\tau$ SM decay, $ee \rightarrow \ell\ell$, $ee \rightarrow ee\ell\ell$

SideBand region definition

- $\Delta E M_{rec}$ region outside the red box
- \rightarrow Used it to calculate expected $N_{\rm bkg}$ in the SR

15

Result Luminosity: 921 fb⁻¹ ($8.4 \times 10^8 N_{\tau\tau}$)

No significant excess over SM background predictions

Upper limits

Upper limit on branching fraction at 90% CL

$$\mathcal{B}(\tau^{-} \to p\mu^{-}\mu^{-}) < \frac{N_{\text{sig}}^{\text{UL}}}{2N_{\tau\tau}\epsilon},$$

$$\overline{V_{\tau\tau}} = 8.4 \times 10^{8}$$

LHCb: $\mathcal{B}(\tau^- \rightarrow p\mu^-\mu^-) < 4.4 \times 10^{-7}$ LHCb: $\mathcal{B}(\tau^- \rightarrow \overline{p}\mu^+\mu^-) < 3.3 \times 10^{-7}$

- $\tau^- \rightarrow p\mu^-\mu^-, \tau \rightarrow \bar{p}\mu^-\mu^+$: One order improve
- Other four channels: First measurement

90% CL ULs reported in this talk

90% CL upper limits on τ LFV decays

Expected sensitivity at Belle II

- Belle II data taking: 50 ab⁻¹
- Search sensitivity: $< O(10^{-9}) \rightarrow$ Stay tuned!

Summary

Tau LFV: $\tau \rightarrow \ell \gamma \ (\ell = e, \mu)$

- Use full data and improve analysis technique
- No significant excess over the predicted background $B(\tau \rightarrow \mu \gamma) < 4.2 \times 10^{-8} \rightarrow \text{Most stringent limit}$ $B(\tau \rightarrow e\gamma) < 5.6 \times 10^{-8}$ at 90% CL

Tau BNV/LNV: $\tau \rightarrow p\ell\ell' \ (\ell^{(\prime)} = e, \mu)$

• $B(\tau^- \to p\mu^-\mu^-) < 4.0 \times 10^{-8}, B(\tau^- \to \bar{p}\mu^-\mu^+) < 1.8 \times 10^{-8}$

→ Upper limit at LHCb: $\sim 10^{-7}$ → One order improve

• $\tau^- \rightarrow \bar{p}e^+e^-, pe^-e^-, \bar{p}e^+\mu^-, \bar{p}e^-\mu^+$: First measurement

Backup

Previous analysis and Mbc

Beam constrained mass: $M_{bc} = \sqrt{\left(\frac{\sqrt{s}}{2}\right)^2 - \left(p_{\mu\gamma}^{CM}\right)^2}$

$$\%$$
 Scale $\left|p_{\gamma}^{CM}\right| = \left(\frac{\sqrt{s}}{2} - p_{\mu}^{CM}\right)$

Previous analysis

$$M_{inv} = \sqrt{\left(E_{\mu\gamma}\right)^2 - \left(p_{\mu\gamma}\right)^2}$$
$$\Delta E = E_{\mu\gamma}^{CM} - E_{beam}^{CM}$$

Background estimation

Make background PDFs depending on M_{bc} , $\Delta E/\sqrt{s}$.

- $\tau\tau$, $\mu\mu\gamma$ background events: Determine PDFs using MC simulation
- $ee\gamma$: Determine PDF using the data by applying the elD in tag-side

 M_{bc} , $\Delta E/\sqrt{s}$: almost independent from one another

- Background PDF = $F(M_{bc}) \times G(\Delta E/\sqrt{s})$ The total background PDFs:
- $C_0 F_{\tau\tau} + C_1 G_{\mu\mu\gamma}$ or $C_2 F_{\tau\tau} + C_3 G_{ee\gamma}$

 \rightarrow C_i by fitting the data (in sideband region)

∆E/√s

Likelihood fit

2D unbinned maximum likelihood fit

$$\mathcal{L} = \frac{e^{-(s+b)}}{N!} \prod_{i=1}^{N} \left(sS_i + bB_i \right).$$

- s: number of signal from fit
- *b*: number of background from fit
- S_i : Signal PDF \rightarrow use signal MC simulation
- B_i: Background PDF

How to get upper limits

- Signal event: Poisson(s), Background event: Poisson(b)
- \rightarrow Generate eg. 10000 toys based on each PDF
- b: Expected background event
- s is varied until finding s_{toy} , where $P(s_{toy} > s_{obs})$ is 90% $\rightarrow s_{90}$
 - In order to get expected limit, we assume $s_{obs} = 0$

Observed upper limit

- 2D likelihood fit is performed to the data
 - $s_{obs} = -0.25^{+1.78}_{-1.27}$ for $\tau \to \mu \gamma$
 - $s_{obs} = -0.49^{+4.37}_{-3.64}$ for $\tau \to e\gamma$
- Observed s₉₀ and upper limit is
 - $s_{90} = 2.8$, $Br(\tau \rightarrow \mu \gamma) < 4.2 \times 10^{-8}$ for $\tau \rightarrow \mu \gamma$
 - $s_{90} = 3.0, Br(\tau \rightarrow e\gamma) < 5.6 \times 10^{-8}$ for $\tau \rightarrow e\gamma$

