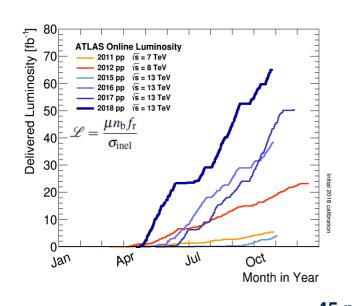
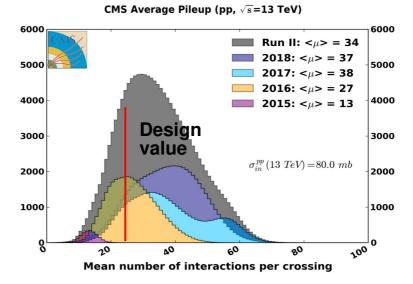
LFV searches at ATLAS and CMS

Introduction

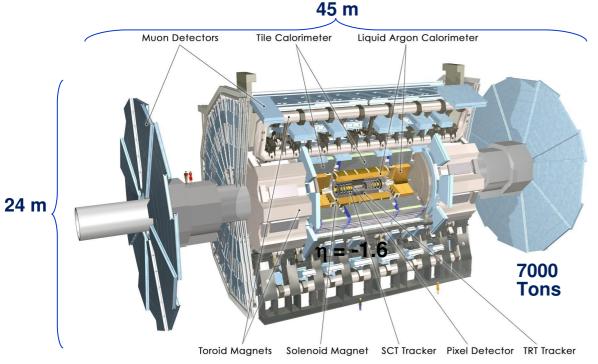
Theory:

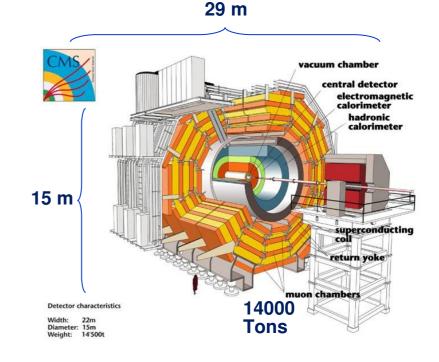
- Lepton flavor violation exists in Nature (neutrino oscillations), but LFV in the charged sector (cLFV) is extremely suppressed in the SM: $BR(\mu \rightarrow e\gamma) < 10^{-48}.$
- Many models predict cLFV decays of leptons, Higgs and/or Z and/or other BSM particles.


ATLAS & CMS Experiments:

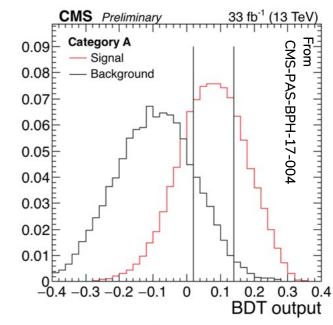

- Complementary efforts are made by both collaborations.
- Detector performance plays a leading role.

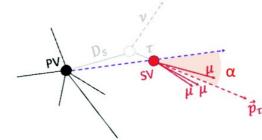
LFV searches in this talk:


- Search for $\tau \rightarrow \mu \mu \mu$
- Search for LFV Z decays
 (→ more in Matteo Franchini talk)
- Search for LFV Higgs decays
- Search for $t \rightarrow (u,c) \ell^+ \ell'^-$
- Measurement of B(W $\rightarrow \tau v$)/B(W $\rightarrow \mu v$)
- Measurement of $\sigma(e^+\mu^-)/\sigma(e^-\mu^+)$


ATLAS & CMS Detectors

Luminosity is measured with forward/tracking detectors and calibrated with beam separation scans


Search for $\tau \rightarrow \mu\mu\mu$ decay

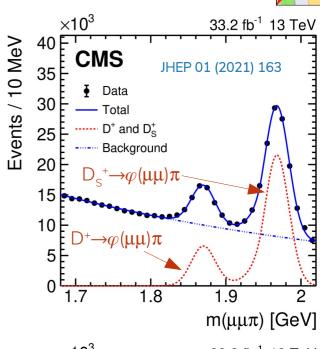


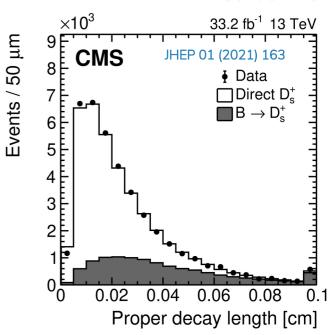
- Compared to e^+e^- colliders, background for τ produced at LHC is significantly more challenging.
- Main source of τ -leptons at LHC are D mesons (>70%), B mesons (~25%) and W (~0.01%) decays.
- CMS employs dedicated channels for heavy flavour (HF) decays and W decays.
- A total of 33 fb⁻¹ of Run 2 data has been analyzed.

Heavy Flavour channel:

- Low momentum muons boosted in the fwd region
- High QCD background
- Dedicated online triggers for online event selection
- Mass resolution of the tau candidate varies with η .
- Multivariate Analysis (BDT) for background rejection:
 - 10 variables including 3μ vertex χ^2 , vertex displacement significance, angle wrt PV direction, muon quality, ...
- Event are divided in 6 categories based on mass resolution and BDT score.

Search for \(\tau\) → \(\mu\)\(\mu\)\(\mu\)\(decay\)


Heavy Flavour channel:


• Number of signal events:

$$N_{\rm sig(D)} = N_{\rm norm} \frac{\mathcal{B}(\mathrm{D_s^+} \to \tau^+ \nu)}{\mathcal{B}(\mathrm{D_s^+} \to \phi \pi^+ \to \mu^+ \mu^- \pi^+)} \frac{\mathcal{A}_{3\mu(\mathrm{D})}}{\mathcal{A}_{\mu\mu\pi}} \frac{\epsilon_{3\mu(\mathrm{D})}^{\rm reco}}{\epsilon_{\mu\mu\pi}^{\rm reco}} \frac{\epsilon_{3\mu(\mathrm{D})}^{2\mu \rm trig}}{\epsilon_{\mu\nu\pi}^{2\mu \rm trig}} \mathcal{B}(\tau \to 3\mu)$$

- N_{norm} is the measured from $D_{\text{S}}^+ \rightarrow \varphi(\mu\mu)\pi$
- A, ϵ^{reco} and ϵ^{trig} are the detector acceptance, selection efficiency, and trigger efficiency.
- Invariant mass peaks modelled using Crystal Ball functions.

- The B contribution to the signal is measured from the $D_S^+ \to \varphi(\mu\mu)\pi$ channel.
- Fit templates of D_S decay length corresponding to prompt and non-prompt decays.

Search for $\tau \rightarrow \mu\mu\mu$ decay

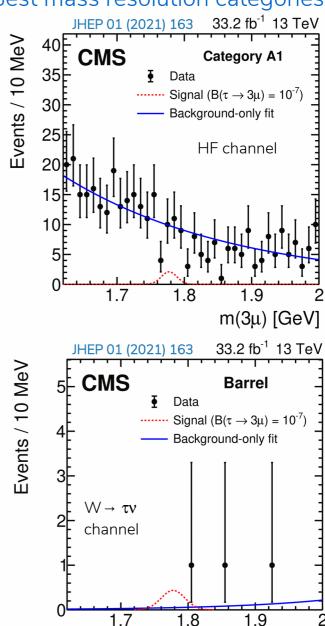
- W → τv channel:
 - Small fraction of τ production at LHC, but with several event selection advantages:
 - High trigger and reconstruction efficiency
 - Signature:
 - Isolated high-momentum muons
 - Large E_{T}^{miss} in the final state
 - → Significantly less background than the heavy flavour channel.
 - Selection based on BDT with 18 variables.
 - Events are divided in 2 categories.
- Branching fraction extraction from the number of signal events:

$$\mathcal{B}(\tau \to 3\mu) = \frac{N_{\text{sig(W)}}}{\mathcal{L}\,\sigma(pp \to W + X)\,\mathcal{B}(W \to \tau\nu)\,\mathcal{A}_{3\mu(W)}\,\epsilon_{3\mu(W)}}$$

Main systematic sources:

	Uncert	ainty (%)	
Source	Barrel	Endcap	
Signal efficiency	7.9	32 🔻	dominated by the L1 trigger
Limited size of simulated samples	4.3	6.2	inefficiency correction
Integrated luminosity	2.5	2.5	
$pp \rightarrow W$ cross section	2.9	2.9	
$\mathcal{B}(W \rightarrow \mu \nu)$	0.2	0.2	
$\mathcal{B}(\mathrm{W}\! o\! au u)$	0.2	0.2	

τ → μμμ search results



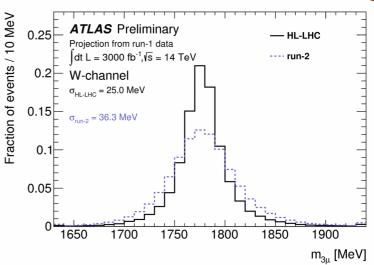
• CMS Results:

- Observed (Expected) limit is 8.0 (6.9) x 10⁻⁸ @ 90% C.L.
 - W boson channel: 20 (13) x 10⁻⁸ @ 90% C.L.
 - HF channel: 9.2 (10.0) x 10⁻⁸ @ 90% C.L.

Results comparison	τ → 3μ 90% CL Limits
Belle Phys.Lett.B687:139-143 (2010)	2.1×10 ⁻⁸
BaBar Phys.Rev.D81:111101 (2010)	3.3×10 ⁻⁸
LHCb JHEP 02 (2015) 121	4.6×10 ⁻⁸ (8 TeV)
ATLAS Eur. Phys. J. C (2016) 76	3.76×10^{-7} (W $\rightarrow \tau v$, 8 TeV)
CMS JHEP 01 (2021) 163	8.0×10^{-8} (W \rightarrow τ V and hadrons, 13 TeV)

Best mass resolution categories

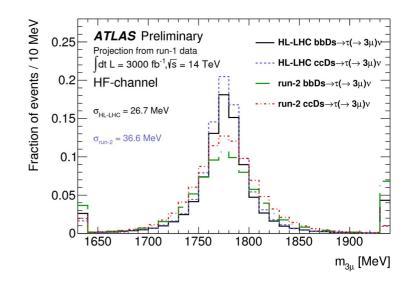
m(3μ) [GeV]


HL-LHC Projections τ → μμμ

ATLAS

- ATLAS Projections for HL-LHC
- Ref: <u>ATL-PHYS-PUB-2018-032</u>

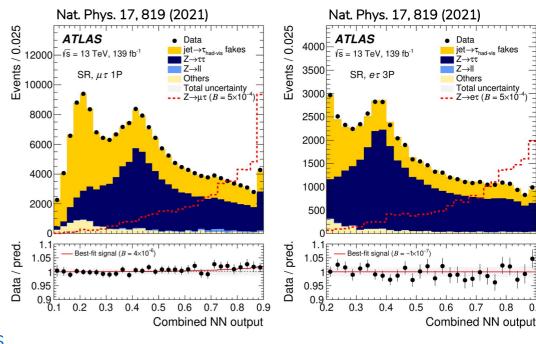
W → τν Channel


Scenario	$\mathcal{A}\times\epsilon[\%]$	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]
Run 1 result	2.31	0.19	276
Non-improved	2.31	50.71	13.52
Intermediate	5.01	50.71	6.23
Improved	5.01	40.06	5.36

Increased acceptance (trigger, reco)Better S/B separation

Heavy Flavour Channel

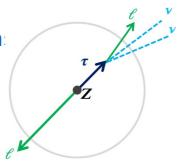
Scenario	$\mathcal{A} \times \epsilon [\%]$	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \rightarrow 3\mu$) [10 ⁻⁹]
High background	0.88	507.05	6.40
Medium background	0.88	152.12	2.31
Low background	0.88	50.71	1.03


Search for LFV Z decays

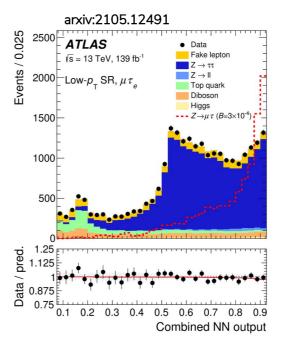
Conservation of Flavour is not inherent to gauge symmetry.

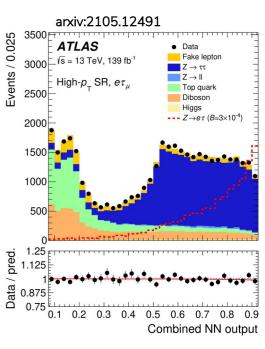
- Search of the $Z \rightarrow e\tau$ and $Z \rightarrow \mu\tau$ decays.
- Performed in the τ_{had} (Nat. Phys. 17, 819 (2021)) and τ_{lep} (arxiv:2105.12491) channels.
- Event classification is based on Neural Networks (NN) $_{ au_{had\text{-}vis}}$

- $Z \rightarrow \mu/e \tau_{had}$ search:
 - Modelling:
 - Misidentified τ_{had} from q/g initiated jets are estimated from data.
 - Z→ττ estimation is based on MC, but uncertainties are reduced using data techniques.



	Uncertainty on $\mathcal{B}(Z o \ell au) \; [imes 10^{-6}]$	
Source of uncertainty	e au	μau
Statistical	± 3.5	± 2.8
Systematic	± 2.3	± 1.6
au-leptons	± 1.9	± 1.5
Energy calibration	± 1.3	± 1.4
Jet rejection	± 0.3	± 0.3
Electron rejection	± 1.3	
Light leptons	± 0.4	± 0.1
$E_{\rm T}^{\rm miss}$, jets and flavour tagging	± 0.6	± 0.5
Z-boson modelling	± 0.7	± 0.3
Luminosity and other minor backgrounds	± 0.8	± 0.3
Total	±4.1	±3.2


Search for LFV Z decays



- Search of the $Z \rightarrow e \tau_{\mu}$ and $Z \rightarrow \mu \tau_{e}$ decays.
- Same flavour combination of light leptons is not considered due to high DY background.

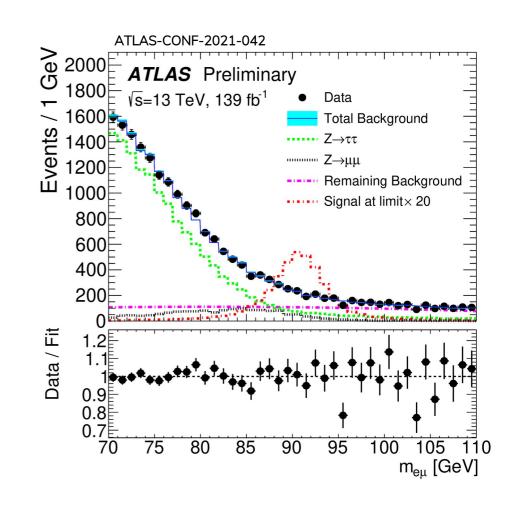
- Deep neural networks with full kinematic information (4-momentum components) of particles. Similar for $Z \rightarrow \mu/e \tau_{had}$ search.
- Low- and High- p_T categorization based on sub-leading lepton:
 - Z→eτ threshold: 20 GeV
 - $Z \rightarrow \mu \tau_e$ threshold: 25 GeV

	Uncertainty in $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]		
Source of uncertainty	e au	μau	
Statistical	±3.5	±3.9	
Fake leptons (statistical)	±0.1	±0.1	
Systematic	±2.7	±3.4	
Light leptons	± 0.4	±0.4	
$E_{\rm T}^{\rm miss}$, jets and flavor tagging	±2.1	±2.4	
$E_{ m T}^{ m miss}$	± 0.4	± 0.8	
Jets	±1.9	±2.2	
Flavor tagging	±0.5	±0.9	
Z-boson modeling	< 0.1	± 0.1	
$Z \to \mu\mu$ yield	_	± 0.8	
Other backgrounds	±0.1	±0.6	
Fake leptons (systematic)	±0.4	±0.9	
Total	±4.4	±5.2	

Results of LFV Z decays

- 95% C.L. limits on $B(Z \rightarrow e\tau)$ and $B(Z \rightarrow \mu\tau)$ for unpolarised and maximally polarised leptons.
- Due to spin correlations, the same polarisation has opposite effects on the energy fraction of the visible decay products in leptonic and hadronic decays.
- Combined results are almost independent of polarisation hypothesis.

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]		
Final state, polarization assumption	e au	μτ	
$\ell \tau_{\rm had}$ Run 1 + Run 2, unpolarized τ	8.1 (8.1)	9.5 (6.1)	
$\ell au_{ m had}$ Run 2, left-handed $ au$	8.2 (8.6)	9.5 (6.7)	
$\ell au_{ m had}$ Run 2, right-handed $ au$	7.8 (7.6)	10 (5.8)	
$\ell au_{\ell'}$ Run 2, unpolarized $ au$	7.0 (8.9)	7.2 (10)	
$\ell au_{\ell'}$ Run 2, left-handed $ au$	5.9 (7.5)	5.7 (8.5)	
$\ell au_{\ell'}$ Run 2, right-handed $ au$	8.4 (11)	9.2 (13)	
Combined $\ell\tau$ Run 1 + Run 2, unpolarized	τ 5.0 (6.0)	6.5 (5.3)	
Combined $\ell \tau$ Run 2, left-handed τ	4.5 (5.7)	5.6 (5.3)	
Combined $\ell \tau$ Run 2, right-handed τ	5.4 (6.2)	7.7 (5.3)	

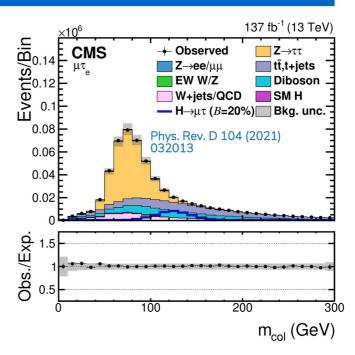

- ATLAS results improve previous 95% CL limits on $B(Z \to e\tau)$ and $B(Z \to \mu\tau)$ by LEP.
 - $B(Z \rightarrow e\tau) < 12 \times 10^{-6} [OPAL]$
 - $B(Z \rightarrow \mu \tau) < 9.8 \times 10^{-6} [DELPHI]$

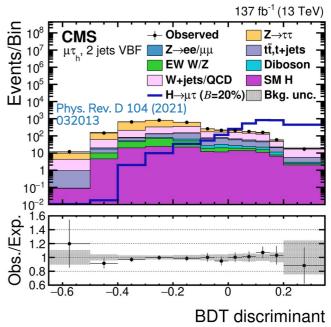
Search for LFV Z decays

• Search for $Z \rightarrow e\mu$:

- Fit of peak in the $m_{e\mu}$ invariant mass distribution
- To reduce backgrounds, events with high- p_T jets and large E_T^{miss} are vetoed.
- BDT is used to further improve background rejection
- Normalization of Z decays determined from sample of $Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ decays
- Analysis limited by statistical uncertainties in data and in simulation
- Upper limit set at 95% CL:
 - $B(Z \rightarrow e\mu) < 3.04 \times 10^{-7}$

Search for LFV H decays

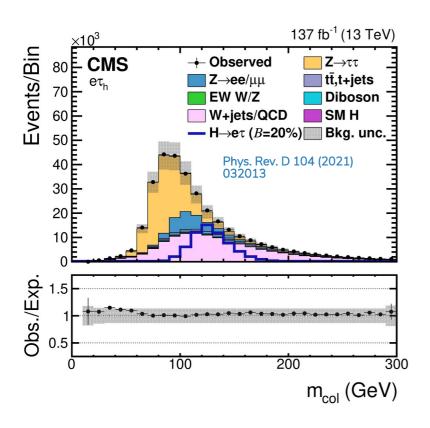


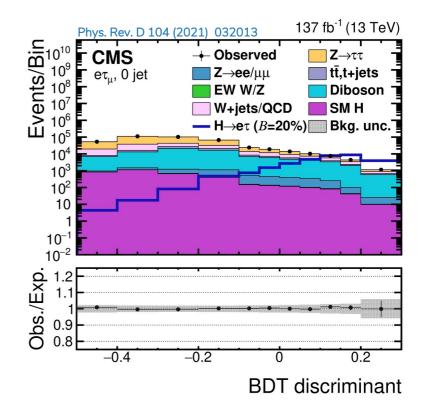

Yukawa off-diagonal terms

$$\mathcal{L}_Y = -m_i \bar{f}_L^i f_R^i - Y_{ij} (\bar{f}_L^i f_R^j) h + h.c. + \cdots,$$
 In the SM: $Y_{ij} = (m_i/v) \delta_{ij}$

- Search for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ decays.
 - Main backgrounds are the Z $\rightarrow \tau\tau$, W+jets and QCD production.
 - Embedding data-driven technique is used to model Z→ττ
 - Analysis employs four categories: 0-jet, 1-jet, 2-jet VBF and 2-jet noVBF.
 - Mass reconstruction based on collinear mass.
 - BDT discriminant is fit to achieve higher sensitivity.

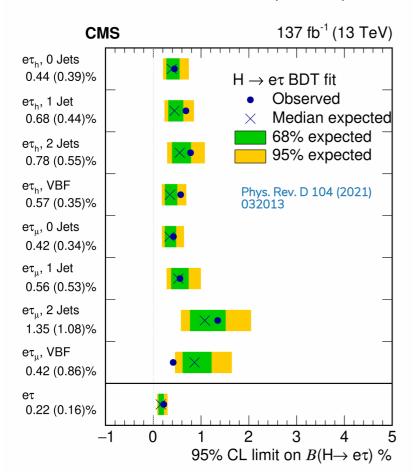
Luca Fiorini

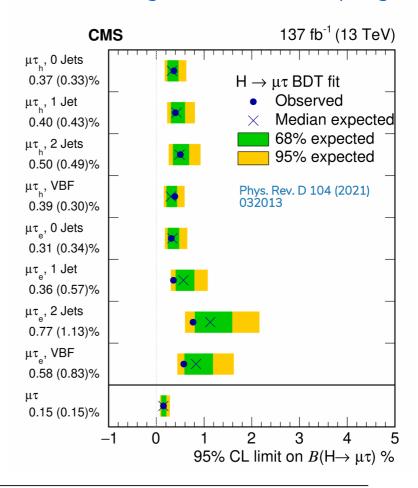



BDT discriminar

Search for LFV H decays

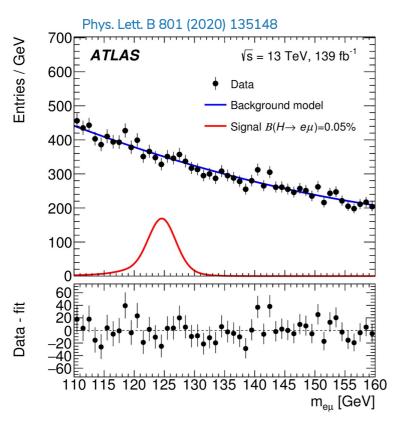
• For the $H\to e\tau$ decay search, additional $Z\to ee$ background with electron misidentified as $\tau_{_{had}}$

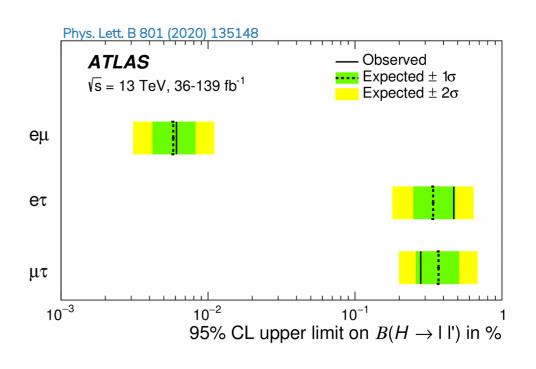




Results of LFV H search

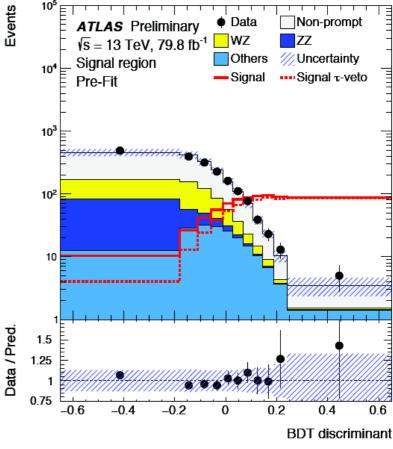
• 95% C.L. limits on $B(H \rightarrow e\tau)$ and $B(H \rightarrow \mu\tau)$ and on off-diagonal Yukawa coupling:




	Observed (expected)	Best fit branching	Yukawa coupling
	upper limits (%)	fractions (%)	constraints
$ ext{H} ightarrow \mu au$	< 0.15 (0.15)	0.00 ± 0.07	$< 1.11 (1.10) \times 10^{-3}$
$H \to e \tau$	< 0.22 (0.16)	0.08 ± 0.08	$< 1.35 (1.14) \times 10^{-3}$

Search for LFV $H \rightarrow e\mu$

- Unbinned fit of the m $_{_{e\mu}}$ mass spectrum, similar to H $\rightarrow \mu\mu$ and H $\rightarrow \gamma\gamma$ analyses.
- Events are separated in 8 categories (Low p_{T} , VBF, 3 barrel and 3 endcap).
- Background modeled by a Bernstein polynomial of degree two with category-dependent parameters.
- Signal modeled by the sum of a Crystal Ball and a Gaussian distribution.

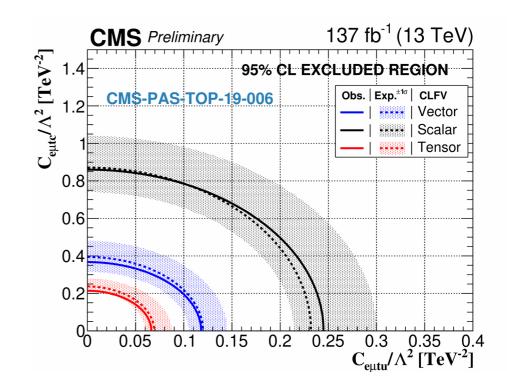

No excess observed, 95% CL limit is $B(H \rightarrow e\mu) < 6.1 \times 10^{-5}$ (5.8×10⁻⁵ expected)

Search for LFV in top quark decays

- Searching for t → (u,c) ℓ + ℓ '-
- Probe of cLFV in top quark decays exploiting the large $pp \rightarrow t\bar{t}$ production at the LHC.
- Prior to this search, LFV branching ratios were only loosely constrained (Br $\leq 10^{-3}$).
- Event selection:
 - 3 isolated light leptons,
 - \geq 2 jets, $p_{\tau} > 25$ GeV.
- \bullet 60% of the background is composed of $t\bar{t}$ and Z+jets events with an extra non-prompt lepton.
- A Boosted Decision Tree (BDT) is trained on simulated events.

$$\mathcal{B}(t \to \ell \ell' q) < 1.86 \times 10^{-5}$$
 (observed).

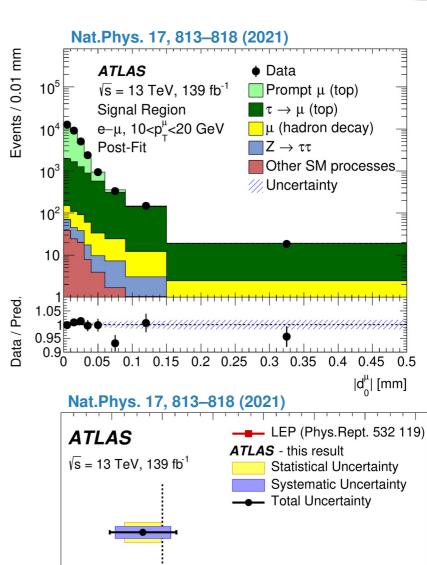
$$\mathcal{B}(t \to \ell \ell' q) < 1.36^{+0.61}_{-0.37} \times 10^{-5}$$
 (expected).


$$\mathcal{B}(t \to e\mu q) < 4.8^{+2.1}_{-1.4} \times 10^{-6}$$
 (observed)

$$\mathcal{B}(t \to e\mu q) < 6.6 \times 10^{-6}$$
 (expected)

Search for LFV in top quark decays

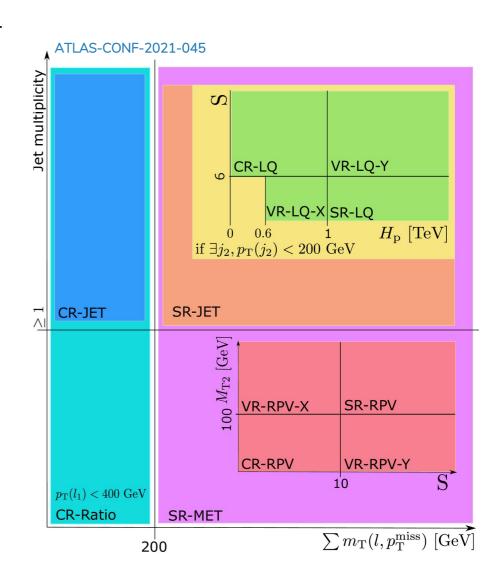
- Searching for t → (u,c)eµ
- CMS search uses full Run 2 statistics.
- SR events have $N_{b-iets} = 1$.
- Events with $N_{\text{b-jets}} > 1$ are assigned to the $t\bar{t}$ CR.
- C_{vector} , C_{scalar} , and C_{tensor} Wilson coefficients, related to the corresponding dimension-six operators, are probed in the context of EFT with NP scale chosen to be $\Lambda=1$ TeV.
- A binned likelihood fit is performed on the full BDT discriminant distributions in the signal region and tt control region.



$$\mathcal{B}_{tensor}(t \to e\mu u(c)) < 0.25 \times 10^{-6} (2.59 \times 10^{-6})$$
 $\mathcal{B}_{vector}(t \to e\mu u(c)) < 0.135 \times 10^{-6} (1.3 \times 10^{-6})$
 $\mathcal{B}_{scalar}(t \to e\mu u(c)) < 0.07 \times 10^{-6} (0.89 \times 10^{-6})$

Search for LFU deviations

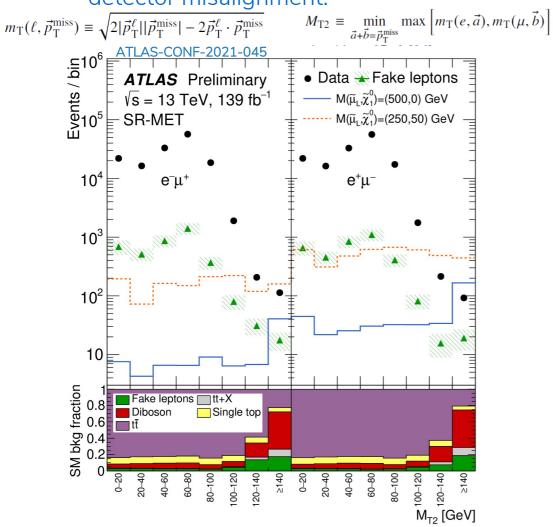
- Measurement of $R(\tau/\mu) = B(W \to \tau v)/B(W \to \mu v)$
- SM predicts $R(\tau/\mu) \sim 1$.
- Previous most precise measurement LEP:
 - $R(\tau/\mu)=1.070 \pm 0.026$, 2.7 σ deviation from SM.
- Pure sample of W decays is obtained from tt decays.
- To reduce systematics, W $\rightarrow \tau$ ($\rightarrow \mu \nu \nu$) ν decays are used for the R(τ/μ) measurement.
- The difference in transverse impact parameter $d_{_0}$ is exploited to differentiate between μ and $\tau_{_{\mu}}$ decays of the W.
- A 2D profile likelihood in p_T - d_0 (3x8 bins) is performed.
- Results are in agreement with the SM expectations: $R(\tau/\mu)=0.992\pm0.013$


 $R(\tau/\mu)=B(W\rightarrow\tau\nu)/B(W\rightarrow\mu\nu)$

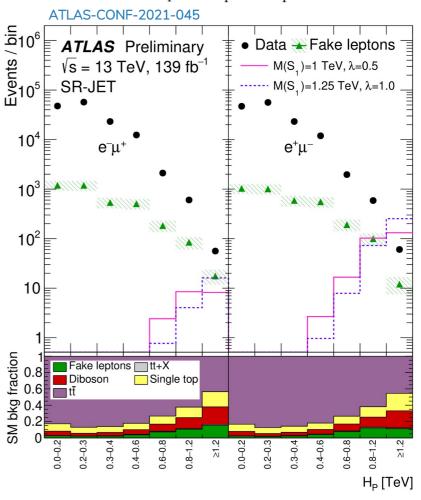
$ATLAS\ e^{+}\mu^{-}/\mu^{+}e^{-}\ asymmetry$

• In the SM:
$$\rho_{\rm SM}$$
=1. $\rho \equiv \frac{\sigma(pp \to e^+\mu^- + X)}{\sigma(pp \to e^-\mu^+ + X)}$

- Searches for p≠ 1 motivated by BSM models:
 - RPV SUSY smuons.
 - Leptoquarks.
 - LFU violation related to B-anomalies.
- ATLAS search for $\rho>1$, because $\rho<1$ is more challenging due to experimental biases:
 - mis-id P(j \rightarrow e)>P(j \rightarrow μ)
 - σ(W⁺j)>σ(W⁻j)
- Events separated in categories with E_T^{miss} (SR-MET and SR-RPV) and with jets (SR-JET and SR-LQ)

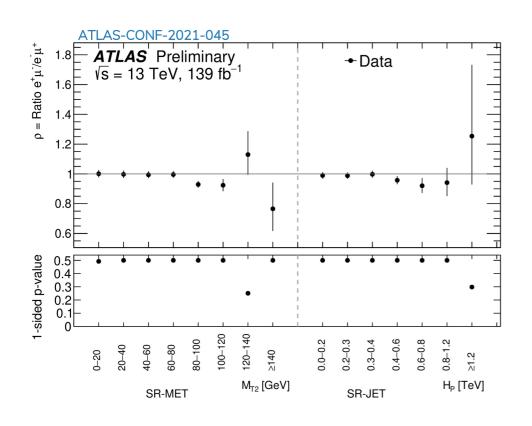


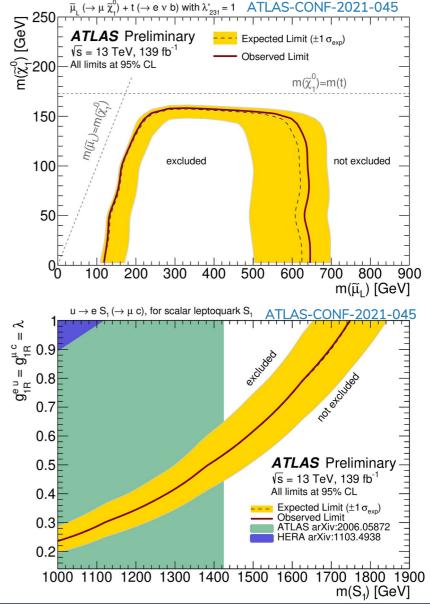
$ATLAS\ e^{+}\mu^{-}/\mu^{+}e^{-}\ asymmetry$



- Sources of bias corrected for:
 - Difference in fakes contribution, $e_{fake}^{-}\mu_{real}^{+} > e_{fake}^{+}\mu_{real}^{-}$
 - Difference in μ^+/μ^- efficiency due to toroid field
 - Muon sagitta bias, charge asymmetry dependent on the muon $p_{\scriptscriptstyle T}$ caused by

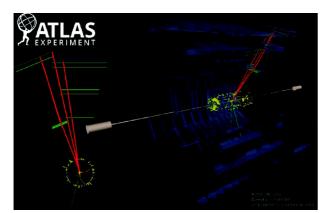
detector misalignment.

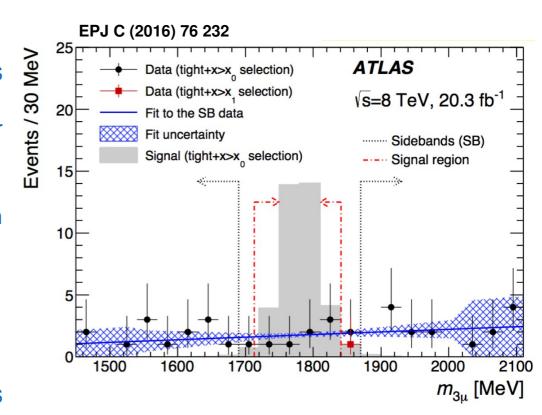

$$H_{\rm P} \equiv |\vec{p}_{\rm T}^e| + |\vec{p}_{\rm T}^{\mu}| + |\vec{p}_{\rm T}^{j_1}|$$



$ATLAS e^{+}\mu^{-}/\mu^{+}e^{-} results$

- No excess observed for $\rho > 1$
- 95% CL upper limits are set for RPV SUSY and scalar LQ models.

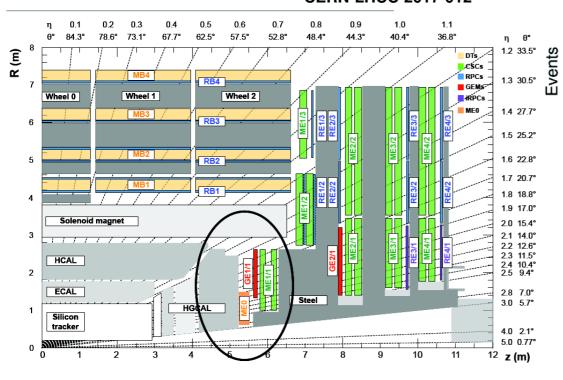

Conclusions


- Search for $\tau \to \mu\mu\mu$ was performed by CMS using both Heavy Flavor (HF) and W channels. The limit on the branching ratio is 8.0 x 10⁻⁸ at 90% CL.
- ATLAS projections for HL-LHC indicate sensitivity to the 10⁻⁹ level.
- Limits set at LHC in the search for LFV decays of the Z and Higgs bosons constantly improve.
- ATLAS and CMS exploit top-quark decays to searches for LFV and deviation of LFU.
- Limits of the ATLAS search for $\sigma(e^-\mu^+ + X)/\sigma(e^+\mu^- + X)$ excess interpreted in terms of RPV SUSY and Scalar LQ models.
- Growing evidence for anomalies in lepton interactions, but no direct evidence of LFV processes so far.

Bonus Slides

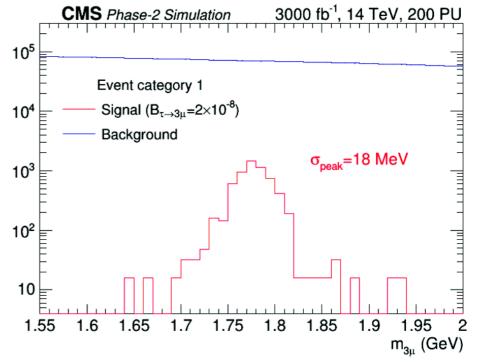
Neutrinoless $\tau \rightarrow 3\mu$ decay

- Searching for $\tau \rightarrow 3\mu$
- Searching $\tau \rightarrow 3\mu$ at a hadron collider is difficult:
 - Low energy muons have lower reconstruction efficiency.
 - Need multiobject triggers.
- Uses W \rightarrow TV channel to select events with 3 boosted muons and $E_{\scriptscriptstyle T}^{\rm miss}$.
- Result based on 20.3 fb1 at $\sqrt{s} = 8 \text{ TeV}$
- Signal Region: | M(3µ) Mt | < 1 GeV
- Concept: extrapolation of backgrounds from sidebands.

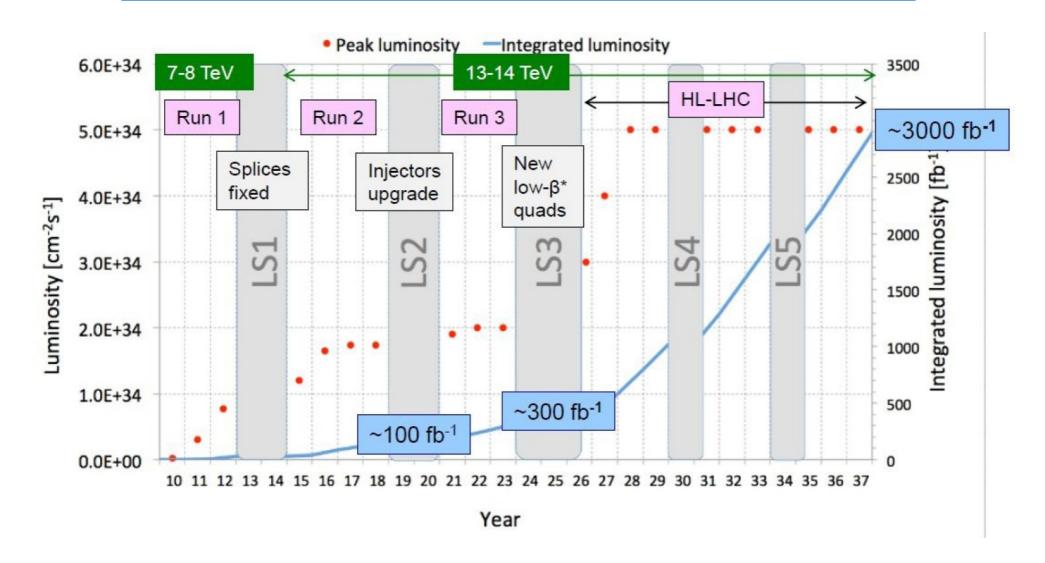

• Limits only from W decays less stringent than Bell/BaBar/LHCb results.

BR(τ→μμμ)< 3.8 10⁻⁷ @ 90% CL Belle: BR(τ→μμμ)< 2.1 10⁻⁸ @ 90% CL

CMS $\tau \rightarrow 3\mu$ decay projections

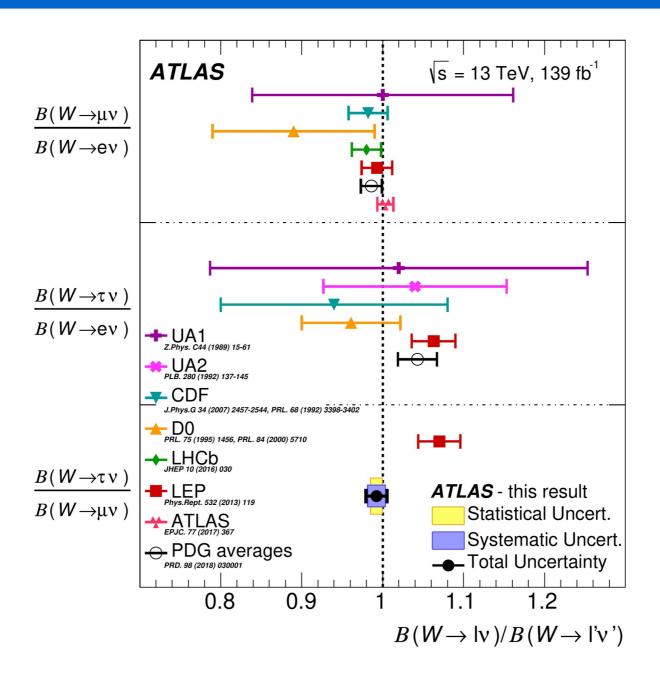

- Projection for HL-LHC (3000 fb⁻¹)
- Forward muon detectors will be enhanced.
- The new MEO detector extends coverage from $\eta = 2.4$ to 2.8
- •The major source of T at LHC is D,B meson decays

CERN-LHCC-2017-012



Signal and background yields in (1.55, 2.00) GeV, assuming BR(τ ->3 μ)=2x10⁻⁸

		Category 2
Number of background events	2.4×10^{6}	2.6×10^{6}
Number of signal events	4 580	3 640
Trimuon mass resolution	18 MeV	31 MeV
$B(\tau \to 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	3.7 ×	10^{-9}



LHC Upgrade

- In parallel design of electron-positron linear colliders ILC, CLIC
 At CERN for >2035: HE-LHC, VHE-LHC, TLEP,...

LFU Summary

