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Thermalization of out-of-equilibrium QGP system

hydro

1

0

Gauge fields
kinetic theory

system dominated by longitudinal expansion

2nd viscous hydro

0+ τ01/Qs

τ

PL/PT

PT : transverse pressure

PL: longitudinal pressure

• A theoretically challenging question to have τ0 ∼ O(1) fm/c.

• Motivation from collective flow observation in small systems.
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Kinetic theory description

Distribution function of quarks and gluons,

f(t,x,p) ⇐⇒



∫
p
pµf(t,x,p) = nµ ∼ hydro

∫
p
pµpνf(t,x,p) = Tµν ∼ hydro

∫
p
pµ . . . pνf(t,x,p) = Mµ...ν

• Distribution function satisfies kinetic equation,

pµ∂µf(t,x,p) = C[f ]

• Diffusion approximation for all QCD elastic scatterings: gg ↔ gg ...
[J-P. Blaizot, B. Wu, L. Yan]

C[f ]→ −∇p · J (p)− S(p)

• Transient gluon BEC during thermalization, ... still an open question.
[J-P. Blaizot, L. McLerran, J. Liao, R. Venugopalan, ...]
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Isotropization with diffusion approximation
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reduction of d.o.f. : kinetic theory︸ ︷︷ ︸
all moments

=⇒ hydro︸ ︷︷ ︸
finite number of moments!
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To capture the reduction of d.o.f.

Can we find some types of moments/modes,
which are sensitive to the angular dependence
of the distribution function, and are sufficient
to describe system hydrodynamization ?

• Dimension = energy-momentum tensor.

• Related to ε, PL and PT .
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L-moment

p2-moment weighted with Legendre Polynomial P2n:

Ln =

∫
d3p

(2π)3p0
p2 P2n(vz = pz/p

0)︸ ︷︷ ︸
Legendre Polynomial

f(τ, ~p⊥, pz),

• Mass dimension of Ln is same as Tµν .

• n = 0 ⇔ energy density: L0 = ε.

• n = 1 ⇔ pressure anisotropy: L1 = PL − PT .

• n ≥ 2 ⇔ finer structure of f (or δf).

In the case of Bjorken expansion close to equilibrium: Ln =

∞∑
m=n

cm
τm
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Equation of motion for Ln

Transport equation with relaxation time approximation :[
∂τ −

pz
τ
∂pz

]
f(p, τ) = −f(p, τ)− feq(p/T )

τR
, τR = τR(T ) ∼ η

s

which leads to

∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]− Ln

τR
(1− δn0), n = 0, 1, ...

• an, bn and cn are constant coefficients.

a0 =
4

3
, a1 =

38

21
, . . .

• τR/τ (Knudsen number) ⇔ How far a system is away from equilibrium
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Truncation of the coupled equations

∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]− Ln

τR
(1− δn0) n = 0, 1, ...

Truncate at n-th order: ignore all L-moments higher than n-th order

• at n = 0

∂E
∂τ

+
4

3

E
τ

= 0 → E ∼ τ−4/3 ideal hydro

• at n = 1 (Two-moment case)

∂L0

∂τ
=− 1

τ
[a0L0 + c0L1]

∂L1

∂τ
=− 1

τ
[a1L1 + b1L0]− L1

τR
2nd order viscous hydro?

• at higher orders ...
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EoM of L-moments and exact solutions
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• Truncation at n = 2 already results in good description.

• Agreements of truncation at higher orders (n ≥ 5) are remarkable.
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The free-streaming fixed points: τ/τR → 0

∂Ln
∂τ

=− 1

τ
[anLn + bnLn−1 + cnLn+1]

For infinite n:

• L0 = L1 = L2 = L3 = . . .

⇒ Ln = Ln(τ0)
(τ0
τ

)2

→ τ∂τ lnLn = −2

• Ln(τ) = P2n(0)L0(τ),

⇒ Ln(τ) = Ln(τ0)
(τ0
τ

)
→ τ∂τ lnLn = −1

For finite n,
a0 c0 0 0 . . .
b1 a1 c1 0 . . .
0 b2 a2 c2 . . .
. . . . . . . . . . . . . . .

⇒ ≈ −2(unstable) and ≈ −1(stable)
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The free-streaming fixed points: τ/τR → 0

• Define gn ≡ ∂ lnLn/∂ ln τ , and beta function from moment EoM,

β(g0, w) ≡ τ ∂g0
∂τ

= −g20 − (a0 + a1) g0 − a1a0 + c0b1
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The hydro fixed points: τ/τR →∞

Ansatz form of gradient expansion

Ln =
∑
m=0

α
(n)
m

τn

asymptotic decay rate determined by the leading term: Ln ∼ α(n)
n /τ

⇒ τ∂τ lnLn = −4 + 2n

3
(τR ∝ 1/T )

⇒ τ∂τ lnLn = −4 + 3n

3
(τR constant)

These are stable fixed points in the hydro regime.
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Attractor solutions

[M.Heller, M. Spalinski, R. Janik, G. Basar, G. Dunne, P. Romatschke, ...]
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Fixed points and hydro attractor

Define: gn = τ∂τ lnLn
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• Free-streaming limit: fixed points of all gn degenerate ≈ −1.

• Hydro limit: fixed points of gn split according to n.

• System evolves between these two types of fixed points ⇒ attractor.

e.g., ideal hydro is a trivial attractor solution: g0 = const. = −4/3
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Attractors as smooth connections between fixed points

• Truncation at n = 2:

β(g0, w) ≡ τ ∂g0
∂τ

= −g20 − (a0 + a1 + w) g0 − a1a0 + c0b1 − a0w
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How attractor connects these fixed points?

Adiabatic evolution of pre-hydro mode:
[J. Brewer, L. Yan, Y. Yin]

• Angular spectrum maps to moments Ln, with gaps in eigenvalues.

f(t,x,p) −→ Ψ = (L0,L1,L2, . . .)

so that ⇒ τ∂τΨ = HΨ

• Ground state as the slowest mode during evolution.

10−2 10−1 1 10
τ /τ C

0.8

1.0

1.2

1.4

P/e+1

pre-hydrodynamic
mode dominates

pre-hydrodynamic
mode dominates

pre-hydro mode
all modes

τRedu τHydro
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Renormalization of η/s

Effects from higher order moments/viscous hydro (leading order):

∂τL0 =− 1

τ
(a0L0 + c0L1) ,

∂τL1 =− 1

τ
(a1L1 + b0L0)−

[
1 +

c1τR
τ

L2

L1

]
︸ ︷︷ ︸

Z−1
η/s

L1

τR
(2nd hydro) ,

g2(τ/τR) =− a2 − b2
L2

L1
− τ

τR
.

• Taking attractor solution for g2: Borel-resummed gradients.

• Off-equilibrium effects w.r.t. 2nd order hydro ⇔ effective η/s !
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Effective η/s
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• Out-of-equilibrium physics effectively reduce η/s→ η/s(Kn).
[E. Shuryak, M. Lublinsky, P. Romatschke, M. Martinez et al., J. Noronha (QM19)]

• QGP as non-Newtonian liquid, shear-thinning (like blood flow in vein){
size change from AA to pA in HIC : O(10),

size change in vein : O(103)
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Numerical test of η/s renormalization
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2nd order viscous hydro using effective η/s
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Summary

• L-moments are proposed to quantify system thermalization.

⇒ fluid dynamics for out-of-equilibrium system

• Attractor solutions smoothly connect fixed points of Ln in two limits.

• Hydro can be (has been) used in out-of-equilibrium with η/s(Kn):

* Hydro starts much earlier in heavy-ion collisions.

* Physical value of η/s > phenomenological expectations ∼ O(1/4π).

• Why off-equilibrium effects effectively reduce η/s?

• Effects on the search of QCD critical point.
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