Hydrodynamization of QGP: from kinetic theory to moment equations

Li Yan

Institute of Modern Physics, Fudan University

Symposium on Contemporary QCD Physics and Relativistic Nuclear Collisions

CCNU, Wuhan, Nov. 9, 2019

1712.03856, 1703.10694, 1904.08677, with Jean-Paul Blaizot

Thermalization of out-of-equilibrium QGP system

- A theoretically challenging question to have $\tau_0 \sim O(1)$ fm/c.
- Motivation from collective flow observation in small systems.

Kinetic theory description

Distribution function of quarks and gluons,

$$f(t, \mathbf{x}, \mathbf{p}) \quad \Longleftrightarrow \quad \begin{cases} \int_{\mathbf{p}} p^{\mu} f(t, \mathbf{x}, \mathbf{p}) = n^{\mu} & \sim \text{hydro} \\ \\ \int_{\mathbf{p}} p^{\mu} p^{\nu} f(t, \mathbf{x}, \mathbf{p}) = T^{\mu\nu} & \sim \text{hydro} \\ \\ \\ \int_{\mathbf{p}} p^{\mu} \dots p^{\nu} f(t, \mathbf{x}, \mathbf{p}) = M^{\mu \dots \nu} \end{cases}$$

• Distribution function satisfies kinetic equation,

$$p^{\mu}\partial_{\mu}f(t,\mathbf{x},\mathbf{p}) = \mathcal{C}[f]$$

• Diffusion approximation for all QCD elastic scatterings: $gg \leftrightarrow gg$... [J-P. Blaizot, B. Wu, L. Yan]

$$\mathcal{C}[f] \to -\nabla_{\mathbf{p}} \cdot \mathcal{J}(\mathbf{p}) - \mathcal{S}(\mathbf{p})$$

• Transient gluon BEC during thermalization, ... still an open question. [J-P. Blaizot, L. McLerran, J. Liao, R. Venugopalan, ...]

Isotropization with diffusion approximation

To capture the reduction of d.o.f.

Can we find some types of moments/modes, which are sensitive to the angular dependence of the distribution function, and are sufficient to describe system hydrodynamization ?

To capture the reduction of d.o.f.

Can we find some types of moments/modes, which are sensitive to the angular dependence of the distribution function, and are sufficient to describe system hydrodynamization ?

- Dimension = energy-momentum tensor.
- Related to ϵ , \mathcal{P}_L and \mathcal{P}_T .

$\mathcal{L} ext{-moment}$

 p^2 -moment weighted with Legendre Polynomial P_{2n} :

$$\mathcal{L}_n = \int \frac{d^3 p}{(2\pi)^3 p^0} p^2 \underbrace{P_{2n}(v_z = p_z/p^0)}_{\text{Legendre Polynomial}} f(\tau, \vec{p}_\perp, p_z),$$

$\mathcal{L} ext{-moment}$

 p^2 -moment weighted with Legendre Polynomial P_{2n} :

$$\mathcal{L}_n = \int \frac{d^3 p}{(2\pi)^3 p^0} p^2 \underbrace{P_{2n}(v_z = p_z/p^0)}_{\text{Legendre Polynomial}} f(\tau, \vec{p}_\perp, p_z),$$

• Mass dimension of \mathcal{L}_n is same as $T^{\mu\nu}$.

•
$$n = 0 \quad \Leftrightarrow \quad \text{energy density: } \mathcal{L}_0 = \epsilon$$

•
$$n = 1 \quad \Leftrightarrow \quad \text{pressure anisotropy: } \mathcal{L}_1 = \mathcal{P}_L - \mathcal{P}_T.$$

•
$$n \ge 2 \quad \Leftrightarrow \quad \text{finer structure of } f \text{ (or } \delta f \text{).}$$

In the case of Bjorken expansion close to equilibrium: $\mathcal{L}_n = \sum_{m=n}^{\infty} \frac{c_m}{\tau^m}$

Equation of motion for \mathcal{L}_n

Transport equation with relaxation time approximation :

$$\left[\partial_{\tau} - \frac{p_z}{\tau}\partial_{p_z}\right]f(\mathbf{p},\tau) = -\frac{f(\mathbf{p},\tau) - f_{\rm eq}(p/T)}{\tau_R}, \qquad \tau_R = \tau_R(T) \sim \frac{\eta}{s}$$

Equation of motion for \mathcal{L}_n

Transport equation with relaxation time approximation :

$$\left[\partial_{\tau} - \frac{p_z}{\tau}\partial_{p_z}\right]f(\mathbf{p},\tau) = -\frac{f(\mathbf{p},\tau) - f_{\rm eq}(p/T)}{\tau_R}, \qquad \tau_R = \tau_R(T) \sim \frac{\eta}{s}$$

which leads to

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}), \quad n = 0, 1, \dots$$

• a_n, b_n and c_n are constant coefficients.

$$a_0 = \frac{4}{3}, \quad a_1 = \frac{38}{21}, \quad \dots$$

• τ_R/τ (Knudsen number) \Leftrightarrow How far a system is away from equilibrium

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}) \quad n = 0, 1, \dots$$

Truncate at n-th order: ignore all \mathcal{L} -moments higher than n-th order

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}) \quad n = 0, 1, \dots$$

Truncate at n-th order: ignore all \mathcal{L} -moments higher than n-th order • at n = 0

$$\frac{\partial \mathcal{E}}{\partial \tau} + \frac{4}{3} \frac{\mathcal{E}}{\tau} = 0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4/3} \qquad \text{ideal hydro}$$

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}) \quad n = 0, 1, \dots$$

Truncate at n-th order: ignore all \mathcal{L} -moments higher than n-th order • at n = 0

$$\frac{\partial \mathcal{E}}{\partial \tau} + \frac{4}{3} \frac{\mathcal{E}}{\tau} = 0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4/3} \qquad \text{ideal hydro}$$

• at n = 1 (Two-moment case)

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left[a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right]$$
$$\frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left[a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 \right] - \frac{\mathcal{L}_1}{\tau_R}$$

2nd order viscous hydro?

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right] - \frac{\mathcal{L}_n}{\tau_R} (1 - \delta_{n0}) \quad n = 0, 1, \dots$$

Truncate at n-th order: ignore all \mathcal{L} -moments higher than n-th order • at n = 0

$$\frac{\partial \mathcal{E}}{\partial \tau} + \frac{4}{3} \frac{\mathcal{E}}{\tau} = 0 \quad \rightarrow \quad \mathcal{E} \sim \tau^{-4/3} \qquad \text{ideal hydro}$$

• at n = 1 (Two-moment case)

$$\frac{\partial \mathcal{L}_0}{\partial \tau} = -\frac{1}{\tau} \left[a_0 \mathcal{L}_0 + c_0 \mathcal{L}_1 \right]$$
$$\frac{\partial \mathcal{L}_1}{\partial \tau} = -\frac{1}{\tau} \left[a_1 \mathcal{L}_1 + b_1 \mathcal{L}_0 \right] - \frac{\mathcal{L}_1}{\tau_R}$$

2nd order viscous hydro?

• at higher orders ...

EoM of \mathcal{L} -moments and exact solutions

- Truncation at n = 2 already results in good description.
- Agreements of truncation at higher orders $(n \ge 5)$ are remarkable.

The free-streaming fixed points: $\tau/\tau_R \to 0$

$$\frac{\partial \mathcal{L}_n}{\partial \tau} = -\frac{1}{\tau} \left[a_n \mathcal{L}_n + b_n \mathcal{L}_{n-1} + c_n \mathcal{L}_{n+1} \right]$$

For infinite n:

•
$$\mathcal{L}_0 = \mathcal{L}_1 = \mathcal{L}_2 = \mathcal{L}_3 = \dots$$

 $\Rightarrow \mathcal{L}_n = \mathcal{L}_n(\tau_0) \left(\frac{\tau_0}{\tau}\right)^2 \quad \rightarrow \tau \partial_\tau \ln \mathcal{L}_n = -2$
• $\mathcal{L}_n(\tau) = P_{2n}(0)\mathcal{L}_0(\tau),$
 $\Rightarrow \mathcal{L}_n(\tau) = \mathcal{L}_n(\tau_0) \left(\frac{\tau_0}{\tau}\right) \quad \rightarrow \tau \partial_\tau \ln \mathcal{L}_n = -1$

For finite n,

$$\begin{pmatrix} a_0 & c_0 & 0 & 0 & \dots \\ b_1 & a_1 & c_1 & 0 & \dots \\ 0 & b_2 & a_2 & c_2 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix} \Rightarrow \approx -2 \text{(unstable) and} \approx -1 \text{(stable)}$$

The free-streaming fixed points: $\tau/\tau_R \to 0$

• Define $g_n \equiv \partial \ln \mathcal{L}_n / \partial \ln \tau$, and beta function from moment EoM,

$$\beta(g_0, w) \equiv \tau \frac{\partial g_0}{\partial \tau} = -g_0^2 - (a_0 + a_1) g_0 - a_1 a_0 + c_0 b_1$$

The hydro fixed points: $\tau/\tau_R \to \infty$

Ansatz form of gradient expansion

$$\mathcal{L}_n = \sum_{m=0} \frac{\alpha_m^{(n)}}{\tau^n}$$

asymptotic decay rate determined by the leading term: $\mathcal{L}_n \sim \alpha_n^{(n)} / \tau$

$$\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_n = -\frac{4+2n}{3} \quad (\tau_R \propto 1/T)$$
$$\Rightarrow \tau \partial_{\tau} \ln \mathcal{L}_n = -\frac{4+3n}{3} \quad (\tau_R \text{ constant})$$

These are stable fixed points in the hydro regime.

Attractor solutions

[M.Heller, M. Spalinski, R. Janik, G. Basar, G. Dunne, P. Romatschke, ...]

Fixed points and hydro attractor

- Free-streaming limit: fixed points of all g_n degenerate ≈ -1 .
- Hydro limit: fixed points of g_n split according to n.
- System evolves between these two types of fixed points \Rightarrow *attractor*.

e.g., ideal hydro is a trivial attractor solution: $g_0 = \text{const.} = -4/3$

Attractors as smooth connections between fixed points

• Truncation at n = 2:

$$\beta(g_0, w) \equiv \tau \frac{\partial g_0}{\partial \tau} = -g_0^2 - (a_0 + a_1 + w) g_0 - a_1 a_0 + c_0 b_1 - a_0 w$$

Attractors as smooth connections between fixed points

• Truncation at n = 2:

$$\partial(g_0, w) \equiv \tau \frac{\partial g_0}{\partial \tau} = -g_0^2 - (a_0 + a_1 + w) g_0 + a_1 a_0 - c_0 b_1 + a_0 w$$

How attractor connects these fixed points?

Adiabatic evolution of pre-hydro mode:

[J. Brewer, L. Yan, Y. Yin]

• Angular spectrum maps to moments \mathcal{L}_n , with gaps in eigenvalues.

$$f(t, \mathbf{x}, \mathbf{p}) \longrightarrow \Psi = (\mathcal{L}_0, \mathcal{L}_1, \mathcal{L}_2, \ldots)$$

so that $\Rightarrow \tau \partial_\tau \Psi = \mathcal{H} \Psi$

• Ground state as the slowest mode during evolution.

16/20

Renormalization of η/s

Effects from higher order moments/viscous hydro (leading order):

$$\partial_{\tau} \mathcal{L}_{0} = -\frac{1}{\tau} (a_{0} \mathcal{L}_{0} + c_{0} \mathcal{L}_{1}),$$

$$\partial_{\tau} \mathcal{L}_{1} = -\frac{1}{\tau} (a_{1} \mathcal{L}_{1} + b_{0} \mathcal{L}_{0}) - \underbrace{\left[1 + \frac{c_{1} \tau_{R}}{\tau} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}}\right]}_{Z_{\eta/s}^{-1}} \underbrace{\mathcal{L}_{1}}_{Z_{\eta/s}} \quad (\text{2nd hydro}),$$

$$g_{2}(\tau/\tau_{R}) = -a_{2} - b_{2} \frac{\mathcal{L}_{2}}{\mathcal{L}_{1}} - \frac{\tau}{\tau_{R}}.$$

- Taking attractor solution for g_2 : Borel-resummed gradients.
- Off-equilibrium effects w.r.t. 2nd order hydro \Leftrightarrow effective η/s !

Effective η/s

Out-of-equilibrium physics effectively reduce η/s → η/s(Kn).
 [E. Shuryak, M. Lublinsky, P. Romatschke, M. Martinez et al., J. Noronha (QM19)]

• QGP as non-Newtonian liquid, shear-thinning (like blood flow in vein)

size change from AA to pA in HIC : O(10), size change in vein : $O(10^3)$

Effective η/s

Out-of-equilibrium physics effectively reduce η/s → η/s(Kn).
 [E. Shuryak, M. Lublinsky, P. Romatschke, M. Martinez et al., J. Noronha (QM19)]

• QGP as non-Newtonian liquid, shear-thinning (like blood flow in vein)

size change from AA to pA in HIC : O(10), size change in vein : $O(10^3)$

Numerical test of η/s renormalization

2nd order viscous hydro using effective η/s

Summary

• \mathcal{L} -moments are proposed to quantify system thermalization.

 \Rightarrow fluid dynamics for out-of-equilibrium system

- Attractor solutions smoothly connect fixed points of \mathcal{L}_n in two limits.
- Hydro can be (has been) used in out-of-equilibrium with $\eta/s(Kn)$:
 - * Hydro starts much earlier in heavy-ion collisions.
 - * Physical value of η/s > phenomenological expectations ~ $O(1/4\pi)$.
- Why off-equilibrium effects effectively reduce η/s ?
- Effects on the search of QCD critical point.