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A depiction of how the seminars went at Columbia University ...

“Progress appears when theory is pushed to its limits”



Emergence of fluid dynamics: A bird’s-eye view
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How does a lump of baryon rich neutron star
matter behave under strong gravitational fields?

Neutron Star Mergers

Fig. from L. Rezzolla’s talk at QM2019



High Density QCD Matter: From the Lab to the Sky
Neutron Star Mergers
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Fig. by L. Rezzolla

New signatures for deconfinement/phase transitions?
e.g. Most et al., PRL (2019)

Viscous fluid dynamics + strong gravitational fields?

Viscous effects in neutron star mergers?

Duez et al PRD (2004), Shibata et al. PRD (2017), Alford et al. PRL (2018)
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Viscous effects in binary neutron-star mergers?

Previous assumption (since 1992): viscous effects do not matter

Bildsten and Cutler, Astrophys. J. (1992)
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Why? Based on the simulations/knowledge at that time:
 Transport time scales estimated to be far from ~ microseconds

« Temperatures not so large, system very smooth, gradients too small
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Viscous effects in binary neutron-star mergers

Previous exceptions: Duez et al PRD (2004), Shibata et al. PRD (2017)

Alford, Bovard, Hanauske, Rezzolla, Schwenzer, PRL (2018):
Post-merger phase

Shear dissipation: Relevant for trapped neutrinos if T > 10 MeV
and gradients at small scales ~ 0.01 km

(e.g, turbulence).

Thermal transport: Relevant for trapped electron

Cross-scctionTl area A ’
L i’ neutrinos if T > 10 MeV and

“heat conductivity” gradients ~ 0.1 km




Viscous effects in binary neutron-star mergers

If suppressed

Alford et al. PRL (2018)

Bulk viscosity:
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Figure 3: The flow timescale ¢gow obtained from a numerical-
relativity simulation of two 1.35 M, neutron stars [40]. The red (4
MeV) and gray (7 MeV) contours show the boundaries of the temper-
ature range in which the bulk viscosity roughly takes its maximum
value, while the green contour shows the inner region where the rest-
mass density exceeds nuclear saturation density.
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Should affect density oscillations

after merger!!!
See also Alford, Harris, PRC (2019)
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Viscous effects in binary neutron-star mergers

Alford et al. PRL (2018)

“The effects of bulk viscosity should be consistently included in future merger
simulations. This has not been attempted before and requires a formulation of
the relativistic-hydrodynamic equations that is hyperbolic and stable’.

Challenge: Prove that the solutions {9, T, J55 } are
well posed (existence, uniqueness) and causal in the
full nonlinear regime.

Einstein's equations Conservation laws
R _H e ar v, TH =0 v, Jb =
MV_§QMV_87T pv T = pB =

+ Bulk Viscosity
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Relativistic Navier-Stokes equations

Energy-momentum tensor

THY = cutu” + (P + H)AHVI Lahdau

1950's

Bulk scalar Conservation law

1= —(Vyu' VT =0

This theory is acausal | o |
(mathematical proof by Pichon, 1965)  Nonlinear diffusion equations

| G

3tu:S—TV2u+

Also unstable!!!

(Hiscock, Lindblom, 1984)
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How can one solve this problem?

» Heavy ion collisions define the state of the art
of relativistic viscous fluid dynamics.

> Let us check how this is handled there ...



“Hydro” in our field is not simple textbook hydro

Israel-Stewart theory

Israel, Stewart, Ann. Phys. 118, 341 (1979)
Energy-momentum
tensor

le ) 6,’(1,“,71'“,/,1_[ as dynamical variables

Effective theory for hydrodynamic fields and non-hydrodynamic fields

Dynamics: V “T“V — ()  (energy-momentum conservation)

u MV II + F(e,Vaug, TP II) =0 (bulk)

UMV AT + FH (e, Vaug, 7P, II) =0 (shear)



Despite the impressive progress in recent years, outstanding
guestions remain in the nonlinear regime:

Open problems in physics and mathematics (since 1940)

 (Can one formulate a theory of relativistic viscous fluids
where causality holds in the full nonlinear regime?

* |sthe mathematical problem well-posed?

Results are known only in the linearized regime around equilibrium

See, e.g, Hiscock, Lindblom, Ann. Phys. (1983)
Pu, Koide, Rischke, PRD (2010)

Nonlinearity is essential for mergers!!



Why is this so hard to do?

* 16 coupled nonlinear PDE's (Einstein-Israel-Stewart)

energy-momentum tensor conserved baryon current

TH = eutu” + (P + II)A* JH = nut

Israel-Stewart equation

UV Il + I 4+ (V u® + f(e,n, 1) =0

* Nonlinearity in hydrodynamics is notoriously hard to handle.

« Standard lore: Israel-Stewart equations are beyond current

mathematical techniques. -



Solution: Bemfica, Disconzi, JN, PRL 122, 221602 (2019)

Einstein-Israel-Stewart equations can be written as

Ag(®)V;® + A (®)V,;® + B(®)® = 0

where ¢ = (8,71,%#, Haguwagw/)

First mathematical proof of existence, uniqueness, and causality
in the full nonlinear regime (fully embedded in GR)

Theorem 1. Let (g,u*,II,n,g,p) be a solution to Theorem 2. Let T = (%,&,d",11,7, §ij, ki;) be an
the generalized EIS equations defined on a globally initial data set for the generalized EIS system, with

. . 17} tate P = P(e,n), a bulk viscosit
hyperbolic spacetime M, and let ¥ be a Cauchy sur- an_equation of state (&,m), a bulk viscosity

¢ = ((e,n), and a relazation time i = Tu(e,n).

face. Suppose m;gm + a1 + ﬁfn% > 0 and Assume that & + P(&,R) + 11, m(é,n), ¢(&n) >0,
that (1) holds. Then, for any p € M in the fu- 5o (€,7)+ 52(&,7)n/(€+ P(¢,7) +1I) > 0, and that
ture of £, (e(p),u(p),I(p),n(p), gus(p)) depends n, %(a,n){ and %(s, n) are nonzero. Suppose that
o 8+ 2 og o o 8
only on (g,u*,IL,n, gag, kap)|sn - (), where J~(p) §i; € Hy (%), &4"1Ln, ki € Hy(Y), and that
p)’ S (T2
is the causal past of p and k is the extrinsic curvature PG, A, m € C°(R), where s > 3. Suppose that (1)

. holds for . Then, there exists a globally hyperbolic 16
of ¥ in M. development of L.



Nonlinear causality constraint

¢ .. (9F

* The initial value problem of the full nonlinear set of
Einstein-Israel-Stewart equations can now be solved.

e Valid for arbitrary EOS.
* No symmetry assumptions made.

* No fundamental issues appearif P + 11 < 0
aslongas e+ P+11>0 17



Causality constraint and small systems in heavy ions

S

2
< 1 — C’S Zero baryon density

TII (8 + P -+ H)
. Causa“ty C. Shen, QM2019

[ I pAu 0-5%
AuAu 30-40%

Further constraints will
appear when shear effects
are included in the proof!
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Dependence on
transport coeff. !!!




Is the description of relativistic fluid dynamics unique?
* Israel-Stewart theory not unique (eg. rBRSSS vs. DNMR).

* Transient behavior of strongly coupled (holographic)
liquids not described within Israel-Stewart approach.
Denicol, Niemi, JN, Rischke, PRD (2011).

Is there another approach that describes the
motion of relativistic viscous fluids in a way
compatible with (general) relativity?



Revisiting the gradient expansion

Hydrodynamics: Simplest effective theory for 1€, uy}

pp =0

Vo v A [18%
T =TI (e,u”) + T,

vitscous

Viscous correction? Gradient expansion

Chapman-Enskog

T =T"  (Ve,Vu) + O(V?)

virtscous vitscous
V

higher orders

All possible 15t order terms
with no time derivatives in the local rest frame



Revisiting the gradient expansion

IMPORTANT: If Landau definition is =) u, T = —cu”
assumed to be valid throughout K

 First order truncation leads to relativistic Navier-Stokes
theory, which is acausal and unstable.

* This is not fixed by going to 2"d order in gradients
(note this is NOT Israel-Stewart theory).

 But why doesn’t the gradient expansion work?



A new approach to relativistic viscous fluid dynamics

Based on Bemfica, Disconzi, JN, PRD (2017) and PRD (2019)
See also P. Kovtun, JHEP (2019)

Effective theory: Space-time derivative expansion

18% ' Most general derivative expansion
Tvz’scous (V€7 VU) compatible with symmetries

« Definition of £ and u" not unique out of equilibrium.
 Time derivatives should appear even in the rest frame.

 No reason to expect a priori that Landau’s definition is ok.

Tsumura, Kunihiro, PLB (2008)
Van, Biro, EPJ ST (2008)



A new approach to relativistic viscous fluid dynamics

Based on Bemfica, Disconzi, JN, PRD (2017) and PRD (2019)
See also P. Kovtun, JHEP (2019)

Most general derivative expansion compatible with symmetries

T = (e + A)utu” + (P(€) + Az) A™ — oM + u#Q” + u” Q"

where to 15t order in derivatives

. CZAYV,e
+x4Vau”, Qu=A 1 P +uVau,

e+ P

Energy density correction  Pressure correction Heat flow

Equations of motion: vV, T" =0




Causality and well-posedness are valid in the full nonlinear
regime, also including Einstein’s equations, when

A, x1 > 0, n>0 Rigorous theorems in Bemfica, Disconzi, JN, PRD (2019)
A2 Arbitrary EOS
3Xx4 2> 4n,
2 4n 2 4
AX1+ CA | Xa — 3 > CgAX2 + Ax3 + XoXx3 — X1 | X4 — o) > 0.

Linear Stab”ity also holds: Bemfica, Disconzi, JN, PRD (2019).
See also P. Kovtun, JHEP (2019).

Heat flow coefficient nonzero if shear is nonzero.
Only 6 transport coefficients (Israel-Stewart > 10).
No additional fields besides {¢, u,, }.

Ready for use in heavy ion collisions.



Conclusions

* Neutron star mergers can also be used to obtain essential
info about viscous properties of ultradense matter.

 New results allow the investigation of dissipative
phenomena in general relativistic fluids for the first time.

* Nonlinear causality may impose severe new constraints on
the hydro description of small heavy ion collision systems.

* New approach to relativistic viscous hydrodynamics fixes
decades-long problems.

25



 Extend proof in Israel-Stewart theory to include
shear viscous effects (to appear soon).

* Implement new viscous hydro equations in a code
and investigate phenomenological consequences in
heavy ions.

e Stochastic formulation of new viscous hydro equations
(applications in heavy ions and cosmology).

* Inclusion of critical phenomena.
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Many congratulations to

for their highly successful careers!

27



ADDITIONAL SLIDES



Bemfica, Disconzi, JN, PRD (2019)

Theorem I. Consider the energy-momentum tensor (1) and assume that A, x,, a =
1,...,4, 7, and P are given real valued functions with domain (0, 00), where we recall that
in (1) these quantities are functions of €, i.e., A = A(€), Xa = Xa(€), 7 =n(€), and P = P(e).
Suppose that A, x4, 7, and P are G®) regular. Let T = (E,é,é,i‘l, U) be an initial data
set for Einstein’s equations coupled to (1). Assume that the initial data belongs to G*)(X).
Suppose that X is compact and that € > 0. Suppose that P’ > 0, that A > 0, x; > 0,7 >0,
and that conditions (6) and (7) hold. Finally, assume that 1 < s < 20/19. Then, there exist
a four-dimensional Lorentzian manifold (M, g), a vector field u and a real valued function ¢,

both defined on M, such that:
(1) Einstein’s equations coupled to (1) hold in M.
(2) There exists an isometric embedding i : (X, §) — (M, g) with second fundamental form

K.
(3) Identifying ¥ with its image i(Z) in M, we have &|y, = & and Ny (u) = 4, where My :

that {z'}3_, are coordinates on ¥, then dyely, = € and dpu|y, = U.

(4) (M, g) is globally hyperbolic with Cauchy surface i(X).

(5) (M, g) is causal, in the following sense: for any z in the future® of i(M), (g(z), u(z), e(z))
depends only on Z| i(2)nJ- (=) Where J~ (z) is the causal past of z (with respect to the metric
9)-

(6) (M, g) is unique up to actions of diffeomorphisms of M.

Theorem II. The same conclusions of Theorem I hold if one assumes that the initial

data belongs to the Sobolev space H® for sufficiently large s.

See also Bemfica, Disconzi, Rodriguez, Shao, arXiv:1911.02504 [math.AP]. 29



Why is this so hard to do?

Causality in the nonlinear regime in curved spacetime

[
\*J_(zz:)ﬂz z 30



The ubiquitousness of fluid dynamics

Based on conservations laws + large separation of length scales

Separation of scales — macroscopic: L MICroscopic: E

Knudsen number



How can a pp system behave like a fluid?

Proton at high energies: average shape but with strong color fluctuations

A simple uncertainty principle estimate
Az ~ 0.1fm

Ap ~ Airvzce\w (pr)

X

Quantum correlations should be important !!

1 fm

Fig. from Mantysaari, Schenke, PRL (2016) <T,u,1/>’ <TMVT&IB>7 e

« Opportunity: Investigate quantum entanglement in a non-Abelian theory.
* Here we should really go beyond the “everything is hydro approach” ...




Ideal (Euler) relativistic fluid dynamics

Energy-momentum tensor Conserved charge

T = eutu” + P(e,n) A" JH = nut

A,u.u = Guv + Uy, Uy

Assuming that speed of sound and € + F > 0 uyut = —1

» System is well-posed (Sobolev space H® with s > 5/2)

« - Existence, uniqueness, continuous dependence on initial data

« Causal (domain of dependence property in the sense of relativity)

33



Remember that a system of PDE's is well-posed (Hadamard) when:

http://www.math.ucla.edu/~tao/Dispersive/

1) A solution exists.

2) The solution is unique.

3) The solution depends continuously on initial data (e.g., initial
conditions, boundary conditions).

Ex.: uyz +u=0

a) u(0) = 0,u(5) = 1 = unique solution u(z) = sin(z)

b) u(0) = 0,u(m) = 1 = no solution

¢) u(0) = 0,u(m) = 0 = infinitely many solutions: u(z) = Asin(z)

Ex.:

[ U = U, heat equation )
J u(0,t) = u(1,t) =0 boundary conditions } well-posed

| u(z,0) = up(zx) initial conditions )

¢ o Lewnede hant amrating )

o = —les bé'tk“ é’rdb Vh‘"dt: %gug.t.1011 no continuous dependence
¢ u(0,t) =u(l,t) boundary conditions L L.
Y on initial data
| u(z,0) = ug(z) initial conditions ‘ 34



http://www.math.ucla.edu/~tao/Dispersive/

Mathematical definition of causality (relativity)

See, e.g., Choquet-Bruhat, Wald

Consider a system of (linear or nonlinear) PDE's
N unknowns

Pgp® =0 (6N _,

The system is causal if for any point x in the future of

¢ »™ (z) depends onlyon J~(z)NX

causal past

FIG. 1: (color online) Illustration of causality. In curved
spacetime J ™ (z) looks like a distorted light-cone opening
to the past (blue region); in flat spacetime the cone would
be straight (dotted line). Points inside J~ (z) can be
joined to a point z in spacetime by a causal past directed
curve (e.g. the red line). The Cauchy surface ¥ supports
the initial data and the value of the field ¢(x) depends
only on the initial data on J~ (z) N X.




Fluid dynamics in the relativistic regime

 Einstein + Euler equations: Locally well-posed and causal

Choquet-Bruhat 1958, 1966
Lichnerowicz, 1967

 Einstein + Euler equations: Not globally well-posed (schocks occur)
Christodoulou, 2007

What about dissipative fluids? 7+ =T¢  + =

idea

(a) Einstein+viscous fluid admit existence + uniqueness of solutions?

(b) Causality?
(c) Stability (at least in the linear regime)?
(d) Does the solution really describe the physics of the system?




Causality does not imply (linear) stability

T8 =T, + (A= 7) 9°°(VaCY) — 3 (Ve + VPCe)

(]

Dynamic velocity C'* = (e + P)u” Choquet-Bruhat, 2006

vV, T =0 — Principal part:  {v.vec’ +v.v7ce) + (/\— %u) VAV, Ce

Characteristic matrix: 5XeX"C’ +aXaX?0C* a:=2 +A
Characteristic determinant: % (5 +¢)(x°x,* == CAUSAL

However, this system is linearly unstable around

global equilibrium
Bemfica, Disconzi, JN, 2017 37



Applications: Bjorken flow

Milne coordinates  u, = (—1,0,0,0) T —T(r)

Equation of motion: w=7T"and f =1+ T&,T/T

Heller-Spalinski form

df (w 14
xwf(w) fd( ) 4 3%f(w)? + f(w) (w - _X) +
A 3
1.0 A
N S Attractor -
F T e (0t order slow roll)} /s = 0.08
"T: o8 / o ‘ X = 4’]"
0.7f ; ’
06707 05 1 5 10 28



Applications: Gubser flow

A

dSs ® R spacetime u, = (—1,0,0,0) T — T(p)

Equation of motion (written in 15t order form):

1dT 2 : AF 0 2 2 pp 4
?% + 3 tanh p = F(p) i% + 3V F2 + g){‘}'tanhp +TF - gﬁ(tanhp)z =0

1.2¢

. New tensor
n/s = 0.2 1.0¢

Ideal hydro

X = 47 o8} Navier-Stokes.j
’f’o =1.2 <§ 86

At . ]

0.2} ol N :

0.0} - :

Qo= T :

T<0 Y. >



Definition 8.6 (Strongly causal spacetime)
A spacetime # s strongly causal if given an arbitrarily chosen event p € .#
for each U C .# open neighborhood of p there exist another open neighborhood

of p, V C U, such that no casual curve intersects it more than once.

Definition 8.7 (Inextendible causal curve)

A causal curve ¢ is called future (resp. past) inextendible if it is impossible
to find an event p € M such that for all U C .#, U neighborhood of p, there
erist a t' such that yo(t) € U for all t > ' (respt < ')

In more concrete words, this means that 4¢ has no future (resp. past) endpoint.

Definition 8.10 (Domains of dependence)

Let & be a closed achronal set. The set D™ (s (resp. D™ (&) of all spacetime
events p such that every past (resp. future) inextendible causal curve passing
through p intersects & is called the future (resp. past) domain of dependence
of @. The set D{a) = D™(&f) U D™ (&), union of the past and of the future
domains of dependence is the domain of dependence of &

Definition 8.11 (Cauchy surface and global hyperbolicity)

Let & C M be an achronal set such that D(&f) = M. Then & is called o
Cauchy surface (we instead use the denomination partial Cauchy surface for
a closed achronal set without edge). A spacetime A which admits a Cauchy
surface is called globally hyperbolic.
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Analytic functions obey (o = multi-index):
0%f| < ClalFl

The Gevrey class v(9), & > 1, consists of C> functions that obey the
weaker inequality:

0%f| < Clal+1(al)7.

Advantage: large class of functions, including compactly supported (not
determined by values on an open set).

The larger the o, the larger the space. Larger o: more general results.
~(>°) — Sobolev space.

~(9): used in the study of non-relativistic viscous fluids; also have had
applications in General Relativity (magneto-hydrodynamics).

M. Disconzi

Sobolev H,

1715 =D llo7ull?

71<s
41



Characteristics.

Consider the linear differential operator:

02 u
OxHox”

Lu= a""(x) + b(x, du)

or, more generally (a«=multi-index),

Lu= Z a%(x)d\u + b(x, 0™ u, ..., 0u, ).

|o|=m

We define the characteristic cone Vi of L at T} M by

h(x, &) = Z a%(x)éa = 0.

|o|=m

h(x, &) (=characteristic polynomial) is a homogeneous polynomial of
degree m.

M. Disconzi
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Hyperbolic polynomials (Leray).

h(x, &) is called a hyperbolic polynomial (at x) if there exists ( € T; M
such that every line through ( that does not pass through the origin
intersects V4 at m real distinct points (m =degree of h= order of L).

In this case, the set of ( € T;;M with this property forms the interior of
two opposite convex half-cones Ff.

The differential operator L is called hyperbolic (at x) if h(x, &) is
hyperbolic.

Dualizing, one obtains Cf C TxM. For example

G ={ve TuM|{(v)>0forall ( T}}.

Y™ = {p(x) = 0} € M1 is characteristic for L if

Z a“(x)0qp = 0.

|af|=m

M. Disconzi
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Wave equation: characteristics.

Consider Lu = ugr — uxx, §& = (&0,&1). Then:

2 2 . |
o — &1 =0= & = £
o

/¢ & =&1
&1

; c _ _ ¢
‘p' <) = —<l

'« and Cx are both given by the “light-cone”.

M. Disconzi
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Hyperbolic and weakly hyperbolic operators.

Hyperbolic operators (sometimes called strictly hyperbolic) have a Cauchy
problem that is well-posed in Sobolev spaces.

When the definition of a hyperbolic polynomial is weakened to:

there exists ( € T, M such that every line through ¢ that does not pass
through the origin intersects V, at m, not necessarily distinct, real points,
we obtain weakly hyperbolic polynomials and operators (m =degree of

h=order of L).

Weakly hyperbolic operators are well-posed in Gevrey spaces, but there are
counter-examples to well-posed in Sobolev spaces.

M. Disconzi
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