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Functional renormalization group (FRG) cnc‘-m}

FRG flow equation for the scale-dependent effective average action I'«[¢]:

Wetterich equation

AT ily] = %Tr {8kRk [r(f) [o] + Rk] 71}

C. Wetterich, PLB 301 (1993) 90

o RG momentum scale k
o regulator function Ry, chosen such that
o limy_ 00 MTk[p] = S[p] classical action
(in practice, Mp[p] = S[¢], A sufficiently large UV cut-off)
o limk_oTk[p] =T[¢]  full quantum 1PI effective action
2
o 2-point vertex function Ff) [oli = Okl
5<pi5(pj
Wetterich equation is in principle exact, but cannot be solved without approximations
Reason: flow equation for r(f) [¢] depends on r5(2+")[<p] ,n>1

= infinite tower of flow equations for the vertex functions I'S(H") [¢], n>0

—> need to truncate at some n > 0 by suitably approximating F(kz+") [¢]



JPB'’s interest in FRG CRC-TR211

Available online at www.sciencedirect.com

.cl:nc!@blnEcT'

PHYSICS LETTERS B

Physics Letters B 632 (2006) 571-578
www elsevier com/locate/physletb

A new method to solve the non-perturbative renormalization group equations

Jean-Paul Blaizot *', Ramén Méndez-Galain ®, Nicolds Wschebor >*

® ECT¥, Villa Tambosi, Strada delle Tabarelle 286, I-38050 Villazzano (TN), Italy
Y Instituto de Fisica, Facultad de Ingenieria, J.H.y Reissig 565, 11000 Montevideo, Uruguay

Received 23 March 2005; received in revised form 11 August 2005; accepted 31 October 2005
Available online 10 November 2005

Editor: L. Alvarez-Gaumé

Abstract

We propose a method to solve the non-perturbative renormalization group equations for the n-point functio
solving the equations obtained by closing the infinite hierarchy of equations for the n-point functions. Thi
decoupling of modes and the analyticity of the n-point functions at small momenta: this allows us to neglect some momentum dependence of
the vertices entering the flow equations; (ii) by relating vertices at zero momenta to derivatives of lower order vertices with respect to a constant
background field. Although the approximation is not controlled by a small parameter, its accuracy can be systematically improved. When it is
applied to the O(N) model, its leading order is exact in the large-N limit; in this case, one recovers known results in a simple and direct way, i..,
without introducing an auxiliary field
© 2005 Elsevier B.V. Open access under CC BY license.

s in

In leading order, it consis
hieved: (i) by exploiting the
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Abstract

We present an explicit and simple form of the renormalization group equation which governs the quantum evolution of the
effective theory for the Color Glass Condensate (CGC). This is a functional Fokker—Planck equation for the probability density
of the color field which describes the CGC in the covariant gauge. It is equivalent to the Euclidean time evolution equation for a
second i t—current F i ian in two spatial di i The quantum corrections are included in the leading
log approximation, but the equation is fully non-linear with respect to the generally strong background field. In the weak field
limit, it reduces to the BFKL equation, while in the general non-linear case it generates the evolution equations for Wilson-line
operators previously derived by Balitsky and Kovehegov within perturbative QCD. © 2001 Elsevier Science B.V. All rights
reserved.
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Gradient expansion CRC.-TR}

o consider p = (¢1,...,¢n) and O(N) symmetry
o expand I[g] in gradients of the fields p,, a=1,... N

Zk 14 Yk 14
rlel = [ [t + 22 @0 + O 0, 4.
X
J. Berges, N. Tetradis, C. Wetterich, Phys. Rept. 363 (2002) 223
°op=3¢3
o Vi(p) effective average potential

o Zi(p), Yk(p) effective average (field-dependent) wave-function renormalization
functions
In the following:
o local-potential approximation (LPA): Zx(p) =1, Yi(p) =0
= FRG flow equation for I'[p] becomes partial differential equation for Vi (p)!

s A
o O(N) model: Va(p) =Xop+ = > 0’ + ?6 3
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Flow equation for effective average potential | (Rm

o define “time" variable t = —In %
= “RG time"” flows from t =0 (UV) to t — oo (IR)
o promote t to second independent variable besides p
= Vi(p) = V(t,p)

o define V'(t,p) = 9,V(t,p), V" (t,p) = V(t,p)

° [r£2)(q)] = [q® + V'(t,p)]6a6 + 20V (t, p) SanSon

ab
= @a,a=1,...,N—1 are “pion” modes, py is “sigma” mode
1 N-—-1
o0:V(t, = —/
= Vo) = 3 J(¥+me+&@)

1
+¢+wwm+mw&m+mm0&m@]
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Flow equation for effective average potential |l

cnc.-ﬁ

o use Litim regulator Rk(q) = (k* — ¢°)O(k* — ¢*) == integral over q collapses!

P V(t, p)
orescaler= ———— | try= ——2
r=wWopnez V0 (N—1)A9
=>v’=@_£ rv”:r—av:pvu
“or A2’ or? A2

Qq

o define Ay = m , Q4 volume of d — 1-dimensional sphere

1
_ —(d+2)t
dler) = =fue v
1 1
_l’_

N —1e=2t +v/(t,r)+2rv'(t,r)

—> standard method: solve this equation with finite-difference methods
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Flow equation for derivative of effective average potential mm

New approach: take derivative with respect to r, define u = v’

= Qeu(t,r) + O0.F(t,u) + 8,G(t,r,u,u’) =0 J

Ade—(d+2)t
e~2t +u(t,r)’

1 Ade—(d+2)t

here F(t
where F(t, u) N—1e 2+ u(t,r)+2ru'(t,r)

G(t,ryu,u') =

For now, take large—-N approximation, G(t,r,u,u’) — 0,

= Oeu(t, r)+ 0.F(t,u) =0 J

= advection equation known from hydrodynamics!
= solvable with algorithms used in hydrodynamics!

= E. Grossi, N. Wink, arXiv:1903.09503 [hep-th]

(talk presented at EMMI workshop “Functional Methods in Strongly Correlated Systems”,
Hirschegg, March 31 — April 7, 2019)
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Digression |: method of characteristics CR:TR}

Idea:

solve partial differential eqgs. by converting them into system of ordinary differential eqgs.

== in our case: find characteristic curves s(t, r) where u(s) = const., i.e dz(ss) =0
. _du(s) _ dt(s) ( )
Obviously, 0= 45 T ds Oru Oru(t,r)
= comparison with advection equation
0 = Beut, r) + O F(t, u) = Dru(t, r) + % d,u(t,r)

characteristic equations

ield
YEE 4 L, ) _0F(tu) A du(s)

ds " ds  ou e ?+u(t,n)]?’ ds =0

Interpretation: 1°* two egs. determine characteristic curves s(t,r) in (t, r)—plane,

where u(s) = const., i.e., where it keeps its initial value u(0, r) = uo(r)

dr(s)

= since s < 0, with increasing s (or t) characteristic curves bend left

s
(towards smaller values of r)
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Digression Il: characteristic curves in ideal hydrodynamics | CRC’-TR}

o € energy density

Energy-momentum tensor

o p(€) pressure
T = [e+ p(e)]u"u” — p(e)g"” o u* =~(1,v)7 fluid 4-velocity,
v = (1—v?)"Y2 Lorentz-gamma factor

Equations of motion: energy-momentum conservation

8, T =0

In 1+1 dimensions, combine the two equations for v = t, x to obtain

cs(€)

— _ ‘ IS\~
v + c(€) ° Relev) =y yo:I:/EO de € + p(e')

o+ 1+ ve(e) 8X] Ralev) =0 J Riemann invariants
dp(e)
de

o c(e) = velocity of sound

o y = Artanhv

dt(s+) dx(s+) = vEcl(e)

== characteristic curves s (t, x) defined by

:]_’

dsy dsy  1Evel(e)
= sound waves travelling forward/backward in matter relative to v
dR .
£ _ 0, i.e., R+ = const. on s (t,x)
dst
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Digression |l: characteristic curves in ideal hydrodynamics Il (Rm
t t

X X
expansion: characteristics fan out compression: characteristics cross

— formation of shock wave

= (analytical) method of characteristics not applicable when shock waves occur

[(numerical) finite-difference methods do not converge to the correct solution]

But: shock waves can be treated using energy-momentum conservation across shock
(Rankine—Hugoniot-Taub equations)



The Riemann problem CRC.-TR}

t = 0: step in initial density distribution
t=20
Es
B t > 0:
o expansion wave travels with sound velocity into
region of higher density
o plateau region between foot of expansion wave
t>0 and
« . . .
*\—L o contact discontinuity
o plateau region between contact discontinuity and
£ & e fn

o shock wave, which travels into region of smaller

¢ .
density

http://cococubed.asu.edu/images/flash /f16.pdf
Riemann problem completely analytically solvable!

o method of characteristics for expansion wave
o Rankine-Hugoniot—Taub equations for shock wave
o matching different regions
[ = numerical: finite-volume methods converge to the correct solution]
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Godunov and Godunov-type methods

Numerical solution of hydrodynamics
on a grid:

quantities are constant within a cell

cRc.-ﬁ

Godunov methods:

solve Riemann problem
exactly between grid cells

Godunov-type methods:

solve Riemann problem
approximately between grid cells

Dirk H. Rischke Why FRG flow is hydrodynamic flow
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The Harten—Lax—van Leer—Einfeldt (HLLE) algorithm | cn?—m}

HLLE solves advection equations of type d:u + dxF(u) =0

Qo

Qo

Qo

consider cell boundary at x =0
T . <0
initial distribution of u at time t = 0: X
u(0, x) { b x>0
for t > 0 discontinuity will decay and produce a distribution
u, x< bt
u(t,x) =< ur(x), bit <x< bt
u, x> bt

where by < 0 and b, > 0 are signal velocities with which the decay proceeds to the
left and right of the cell boundary at x =0

In the exact solution of the Riemann problem, uj(x) is a complicated function of x.
In Godunov-type algorithms, approximate uj, = const.

uy is determined by integrating advection equation over finite volume [Xmin, Xmax]
with Xmin < blt7 Xmax > brt: u br ur — bl u — F(U,) + F(U/)
Ir —
b, — by

F(ur) is determined by integrating advection equation over finite volume [0, Xmax]:

F(U/r) =

b.by(ur — u) + b F(u) — biF(ur)
| I S I I (1)J
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The Harten—Lax—van Leer—Einfeldt (HLLE) algorithm Il (Rm

o advection equation in finite-difference form after time t = (n+ 1)At:
At

Ax

o taking Gj11/2 = F(u :&:1/2) with F(uly,,,) given by Eq. (1), yields scheme which has
first-order accuracy in time

qu’+1 = u — M(Gj1/2 — Gj_1/2) (2)J where \ =

o for second-order accuracy in time, compute half-step updated fluxes Gj+1/2
o need to specify signal velocities b+1/27 bJ’-Jrl/2

= in relativistic hydrodynamics, use characteristics:

=—> causal signal propagation!

r = max (o, iy + C",j+1 = if A < 1, no quantity is
i1/ 1+ vielin propagated over distance
., ., larger than one cell size Ax
b,"+1/2 = min (0 1"1 Cs,j ) in one timestep At!
SJ In practice, A = 0.99 works
very well

V. Schneider, U. Katscher, DHR, B. Waldhauser, J.A. Maruhn, C.D. Munz,
J. Comput. Phys. 105 (1992) 93

DHR, S. Bernard, J.A. Maruhn, NPA 595 (1995) 346
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MG and hydrodynamics CRC-TRan

NUCLEAR
PHYSICS A

ELSEVIER Nuclear Physics A 608 (1996) 479-512

The time-delay signature of quark-gluon plasma
formation in relativistic nuclear collisions *
Dirk H. Rischke, Miklos Gyulassy

Physics Department, Pupin Physics Laboratories, Columbia University, 538 W 120th Street, New York,
NY 10027, USA

Received 26 June 1996

Abstract

The hydrodynamic expansion of quark-gluon plasmas with spherical and longitudinally boost-
invariant geometries is studied as a function of the initial energy density. The sensitivity of the
collective flow pattern to uncertainties in the nuclear matter equation of state is explored. We
concentrate on the effect of a possible finite width, AT ~ 0.1T, of the transition region between
quark-gluon plasma and hadronic phase. Although slow deflagration solutions that act to stall the
expansion do not exist for AT > 0.08T;, we find, nevertheless, that the equation of state remains
sufficiently soft in the transition region to delay the pmpaganon of ordmary rarefaction waves for
a considerable time. We compute the of the pi ion function
on AT, since this is the most promising observable for time-delayed expansmn The signature of
time delay, proposed by Pratt and Bertsch, is an enhancement of the ratio of the inverse width of

the pion ion function in direction to that in side-direction. One of our main results is
that this generic signature of quark-gluon plasma fommnon is m!her robus( lo the uncertamucs
in the width of the transition region. for the

signal is likely to be maximized around RHIC energies, /5 ~ 200A-GeV.

Dirk H. Risch
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The Harten—Lax—van Leer—Einfeldt (HLLE) algorithm Il (Rm

o for FRG flow equation:
b.;+1/2 =0 o ve(u) = a’;(u”)
bj+1/2 = min [0, Vf (Ujp)]

o FRG flow equation has only one set of characteristic curves

o u(t,r) itself is associated Riemann invariant

o signals are always transported to the left only, towards smaller r

o Note: characteristic velocity ve(u(t, r)) = v¢(t, r) can become much smaller than -1!
—> stiff differential equation!
== in principle, implicit method for time step required

o workaround: reduce )\, prevent transport over more than one cell in one timestep

= in practice, successive reduction of A by constant factor < 1 works quite well

Dirk H. Rischke Why FRG flow is hydrodynamic flow



d=3, 2=

u(t,r)

0.1
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le-0S

1e-07 &

Te-08

le-03

Te-04

Dirk H

0.05

0.1

~
<
=2
>

8e-03
6e-03
4e-03
2¢-03
0e+00
-2e-03
4e-03

-66»06

! 1 1 ! 1 1 !
.0 01 02 03 04 05 06 07 08

CRC-TR2n1

18 / 37



d=3,M=-01, =1, =0

u(t,r)

|Vf(t,I')|
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CRC-TR2n1

d=3,M=-01, =1, =0

———— 8e-03
6e-03 1
4e-03 B
- 2 203 B
;=) =
E > 0e+00 B
] -2e-03 i
[ 4e-03 4
i t=1.8540
et | | | | | | |
Ty E— 603501 02 03 04 05 06 07 08
le+02 =
le+01
1e+00 =
le-01
__ 1en2E
=
:;19-03*
2 lef
le-05 =
1e-06
le-07
le-08
1 | 3
0 0.05 0.1
T
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CRC-TR2n1

d=3,M=-01, =1, =0

———— 8e-03
6e-03 1
4e-03 B
- 2 203 B
;=) =
E > 0e+00 B
] -2e-03 i
[ 4e-03 B
[ t=2.4698
et | | | | | | |
Ty E— 603501 02 03 04 05 06 07 08
le+02 =
le+01
1e+00 =
le-01
__ 1en2E
=
:;19-03*
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le-05 =
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le-07
le-08
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Results: second-order phase transition

d=3,0=-01, =1, =0

u(t,r)

005~

t=4.3753

0 0.05

0.1

Te+02
le+01
1e+00

Te-01

le-02

le-03

|Vf(t,r)|

le-04
le-05
1e-06
1e-07

1e-08.

8e-03

6e-031

4e-031-

3, 2e-03
=

> 0e+00

-2e-03

-4e-03

6o I I I I I I I
6e 0%).0 01 02 03 04 05 06 07 08

Remarks:
o locally concave potential

o signal velocity |v¢(t, r)| can
become > 1!
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CRC-TR2n1

d=3, 2=0.0024, \y = —0.103, }¢ =1

le-051~ 1
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d=3, 2=0.0024, \y = —0.103, }¢ =1

1=2.5344 ]

I I I I I I I I I
001 002 003 004 005 006 007 008 009 0.1
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te+01 |

Te+00
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Results: first-order phase transition — symmetric phase

d=3, 2=0.0024, \y = —0.103, }¢ =1
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le-05

V(t.0)

Shock discontinuity develops!

== cannot be resolved by
finite-difference method!

= requires finite-volume
method or other
shock-capturing scheme!
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Results: first-order phase transition — symmetric phase
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Results: first-order phase transition — symmetric phase (Rm
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Results: first-order phase transition — symmetric phase
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Remarks:

signal velocity |ve(t,r)| > 1
at shock discontinuity!

shock discontinuity stalls!
locally concave potential
minimum at ¢ =0

= symmetric phase!
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Results: first-order phase transition — broken phase CRC-TR2n
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Results: first-order phase transition — broken phase (Rm
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Results: first-order phase transition — broken phase (Rm

d=3, A2=0.0024, \y = —-0.106, ¢ =1
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Remarks:

o signal velocity |ve(t,r)] > 1 at
shock discontinuity!

o shock discontinuity moves out
of grid!

|vf(t,r)|

o locally concave potential

© minimum at ¢ # 0

— broken phase!
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Recent developments m?—ﬁ

o Problem of |ve| > 1: use implicit method for time step

o Beyond large—NN approximation:
= Owu(t, r)+0,F(t,u)+0,G(t,r,u,u’) = OJ

1 Adef(d+2)t
N—1e 2t +u(t,r)+2ru(t,r)

where G(t,r,u,u’) =
= diffusion term!
—= HLLE algorithm in principle able to handle this, but more robust and flexible:

Kurganov—Tadmor (KT) algorithm
A. Kurganov, E. Tadmor, J. Comput. Phys. 160 (2000) 241

also used in 341-d heavy-ion collision modelling! (MUSIC, BESHYDRO, ...)

o Include fermions:

= Owu(t,r)+0,F(t,u)+0,G(t,r,u,u’) = H(r)J

where H(r) is simple r—dependent source term

—> treat with standard Sod's operator-splitting method
= Do results previously obtained with finite-difference methods change?
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Phase diagram of quark-meson model CR:TR}

R.-A. Tripolt, N. Strodthoff, L. v. Smekal, J. Wambach, Phys. Rev. D89 (2014) no.3, 034010
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Conclusions and Outlook cnc.-m}

o FRG flow equation is equivalent to hydrodynamic flow equation

o standard finite-difference methods fail to produce correct solution in case of shock
discontinuities

o standard finite-volume methods (HLLE, KT, ...) used in hydrodynamics are able to
obtain correct solution of FRG flow equation (i.e., resolving shock discontinuities)

o previous results on phase diagram and masses of quark-meson model seem
unchanged (minimum of potential not affected by shock discontinuity in solution?)
o extend beyond LPA

o compute phase boundary to inhomogeneous phase by finding
r®(k) =0in T — p—plane (A. Koenigstein)

o chiral density wave ansatz to study inhomogeneous phase (M.J. Steil)

o extend to more than one order parameter, e.g. chiral plus color-superconducting
(P. Lakaschus)
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