

Contribution ID: 191

Type: Oral

Fusion Ignition Driven by Pulse Power

Monday 19 June 2017 16:30 (15 minutes)

A low-current-fusion (LCF) ignition path below 6 MA is hinted by high-gain high-field (HGHF) plasma within tokamak vacuum vessel due to recent successful experiments of magneto-inertial fusion (MIF) [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] and earlier experiments of compressed plasma in tokamaks. MIF shares the same principle of magnetic compression and physical process as HGHF tokamak plasma suggested in [Li. G., Sci. Rep. 5, 15790 (2015)], although they are operated at opposite extremes in density and time scale. In an energy confinement time, the two should have similar physical process in different time scale \boxtimes MIF in ns scale and LCF in 10ms to several seconds scale. Scales of pulse power are discussed for fusion ignitions with LCF and MIF. In LCF case, a plasma current below 6 MA is found to reach ignition by HGHF with the extended Ohmic region.

Author: LI, GE (Institute of Plasma physics, CAS)

Presenter: LI, GE (Institute of Plasma physics, CAS)

Session Classification: Oral session 4 - Fusion Research, Large High-Current and High-Energy Systems - Session Chair : Sergey Garanin

Track Classification: High-Energy Density Physics and Technology