

Quantification in nuclear medicine: SPECT

Hind Saikouk^{1,2}

¹:Faculty of science of Rabat, Mohammed V University, Morocco

²: Medical physicist, Nuclear medicine department, Hematology and oncology hospital, Mohammed VI University Hospital, Marrakesh

Email: saik.hind@gmail.com

Introduction

SPECT

SPECT: Single Photon Emission Computed Tomography

≻Collimator

- Selection of photons
- Definition of the lines of response

≻Crystal

- Conversion of photons to scintillation
- ≻Light guide: Optical coupling Crystal-PMT
- ≻Photomultiplier tubes (PMTs)
 - Conversion of scintillation to a signal
- ≻Electronics
- ≻Creation of 2D images

Composition of the gamma camera head *

*: Peterson TE, Furenlid LR. SPECT detectors: the Anger Camera and beyond. Phys Med Biol. 2011 Sep 7;56(17):R145-82. doi: 10.1088/0031-9155/56/17/R01

SPECT vs CT

SPECT

СТ

SPECT-CT

SPECT principle

Projection profile

Sinogram

• A sinogram is an array of all geometrically valid lines integral

Reconstruction

➢Back projection

- Projection profiles acquired at multiple angles
- Forward projection: Counts summed along each projection element to get a "sum" value
- Back projection: Counts are redistributed along each projection element with sum values
- An approximation of the distribution of radioactivity within the scanned slice is obtained
- Corrections are not included

Reconstruction

≻Iterative methods

- Successive estimations, **iterations**, are used to obtain the image of the radionuclide distribution in the organ of interest
- A first estimation can be a uniform image with starting value of 1
- The projections are calculated then compared to the measured projections
- If any discrepancies are noted corrections are made and a new iteration is started
- Corrections for degrading effects can be included in the reconstruction

Qualitative and quantitative image interpretation

Qualitative analysis

- > The visual interpretation of images by a professional:
 - Rendering of disease is present or absent
 - Normal, mild, severe, absent
 - Subjective

Quantitative analysis

- Results are reported in term of values measured in a quantitatively calibrated SPECT
 - Time curve activity, radiopharmaceutical uptake, Bq/ml...
 - Thresholds
 - Objective

Quantitative analysis

≻Quantification in SPECT depends on:

- Image acquisition conditions
 - Administered activity:
 - Matrix size
 - Pixel size
 - Number of projections
 - Acquisition duration: Time per projection, total counts
- Image reconstruction
 - Reconstruction algorithm
 - Back projection: filter, parameters of the filter...
 - Iterative methods: number of iterations, subsets, post filter, parameters of post-filter...
 - Correction of degrading effects:
 - Attenuation and scatter
 - Collimator effect
 - Partial volume effect
 -

Scatter correction

Scatter

- Represents one of the major sources of spatial resolution deterioration
- Contribution in the energy window
- Different methods are used for the compensation of the scatter in images
 - Energy window based methods +++
 - Monte Carlo

Double energy window

• Spatial distribution of the scattered photons SC_S in a secondary large energy window is considered as equal to the scattered photons SC_M under the photopeak

 $SC_M(i,j) = kSC_S(i,j)$

Triple energy window

≻Easy implementation and good results

Based on a pixel by pixel estimation of scatter counts, SC, by a trapezoidal rule $SC = \left[\frac{C_l}{w_l} + \frac{C_r}{w_r}\right] \times \frac{w_m}{2}$

Attenuation correction

Attenuation

- ➢One of the biggest factors degrading quantification in SPECT
- >Underestimation of the absolute estimates of activity: factors of 5-20
- Greater effect for low energy photons and for larger and denser regions of the body
 - Compensation of the attenuation effect

Compensation of the attenuation effect

Compensation of the attenuation effect

CT

Reconstruction of the attenuation distribution

- Determination of linear attenuation coefficient, μ, map, corresponding to the radiotracer used in emission (ex: Tc99m) for each patient
- Acquirement of transmission data sets for various angles
 - External radionuclide sources
 - X-ray tube: SPECT-CT
 - It can be a non-diagnostic CT, **low-dose**

Compensation of the attenuation effect

 \triangleright Accurate μ -map obtained for each projection using CT

- μ is not assumed to be constant
- $\succ \mu$ values used in Chang's algorithm to correct pixel-by-pixel
 - Correction factors, CF, calculated for each pixel of the reconstructed image
 - Multiplication of the current reconstructed image by CF

Current SPECT/CT systems use this method

SPECT quantitative performance test

Aim

≻Evaluation of the correct functioning of the SPECT system

> Verification of the image quality characteristics

- Contrast
- Tomographic uniformity
- SNR

Phantom and sources

≻Jaszczak phantom

- Fill the phantom with water
- Add15 mCi of ^{99m}Tc
- Respect radiation protection rules
- Mix for about 10 minutes
- Let it sit for 45 minutes to 1 hour

Radiation protection

- Source should be prepared inside the hot lab, inside the hot cell
- Use of surgical gown and gloves (should be changed) frequently
- > Dosimeters: Passive and electronic
 - If a lead apron is used the dosimeters should be putted **under** it, at chest level
- \succ Use of lead screen
- ➤ Use of syringe shielding during the injection of Tc99m in the phantom
- Contamination monitoring should be performed after each step of the manipulation of the phantom and source, and at the end of the testing
- Radioactive waste should be managed following the procedure adopted in the department

waste bin

inistère de la Santé

Acquisition parameters

➤Tomographic acquisition

- Center the phantom at the FOV of the detectors
 - Positioned at 22 cm away from each head
- 64 projections per head
- Rotation in 180° per head
- Energy window centered on the photopeak
 - Scatter correction
- 128 x 128 matrix, 3.3 mm pixel size
- Circular orbit
 - Very the rotation of the SPECT heads without colliding with the patient's table
- Time acquisition: 20 seconds per view or 400 kcts/view

Reconstruction

- ≻Reconstruction with the methods used in the department
- ≻For iterative reconstruction
 - 18 iterations/8 subsets (OSEM Method)
 - Gaussian filter with FWHM of 10 mm
- ≻Use of CT for attenuation correction
- ≻ Verification of the image qualitatively
 - Artefacts
- ≻Image analysis
 - AMIDE: Medical Imaging Data Examiner
 - ImageJ
 - IAEA NMQC toolkit

Tomographic uniformity

➤Uniformity: the capacity of the SPECT to restitute a uniform image for a uniform source

 $IU(\%) = \frac{Maximum \ pixel \ counts - Minumum \ pixel \ counts}{Maximum \ pixel \ counts + Minumum \ pixel \ counts} \times 100$

$$RNB(\%) = \frac{SD}{Mean \, pixel \, value} \times 100$$

- Uniform section: Square ROI of 15x15 pixels
- Recommendation of AAPM, report N° 52
 - Uniformity: 10.7%-18.8%
 - rms noise: 3.6%-7.2%

Contrast

Fractional difference in the signal or brightness between the structure of interest and its surroundings

Contrast = $\frac{Average \ pixel \ cts \ from \ uniform \ section - \ min \ pixel \ count \ per \ cold \ sphere}{Average \ pixel \ cts \ from \ uniform \ section}$

• Cold sphere section: Circular ROI for each visible sphere

Contrast

• Recommendation of AAPM, report N° 52

Sphere size (mm)	Minimum	Maximum
31.8	0.53	0.73
25.4	0.35	0.56
19.1	0.21	0.38
15.4	0.11	0.27

Signal-to-noise ratio

SNR: The real measured signal to noiseCalculate the SNR for each visible sphere

$$SNR = \frac{\left|\overline{N}_{sphere} - \overline{N}_{bkg}\right|}{\delta_{bkg}}$$

Let's calculate!

References

- <u>https://amide.sourceforge.net/</u>
- <u>https://humanhealth.iaea.org/HHW/MedicalPhysics/NuclearMedicin</u> e/QualityAssurance/NMQC-Plugins/index.html

Quantitation of SPECT Performance		NJ 10
Published for the	Quantitative Nuclear Medicine Imaging: Concepts, Requirements and Methods	D.L. Balley J.L. Humm A. Toda-Pokropek A. van Aswegen Technical Editor