

Neutron dosimetry in Nuclear Reactors

C. Destouches

CEA/DES-IRESNE-DER

EDUCAM Rabat School (REISS)

02/07/24

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

Definition of the Reactor Dosimetry

→ Quantitative (Fluence) and Qualitative (Spectrum) characterization of the neutron population that has passed through a given point over a defined period of time.

Neutron fluence (1 to 10¹⁵ n/cm²): quotient of the number of neutrons penetrating a given time interval in a suitably small sphere centered at that point, divided by the area of the great circle of that sphere.

Neutron spectrum (in energy: eV or in lethargy unit (ln(E0)/ln(E)) : Neutron population distribution as a function of energy (kinetic) or lethargy unit.

Goals

→ Helping to establish/validate/improve the laws of behaviour of materials and systems under irradiation

Radioprotection

Activity

- Spectrum shape qualification
- Neutron response quantification
- Neutron dose quantification

Reaction rate, Neutron fluence rate, Gaz production rate

Bateman's Equation

Bateman's Equation

• → Reducing dimensions: High-purity metals (wires, discs, strips)

→ Limits/ handling (fil 1/10 mm x 3mm)

→ Alliages : Al-Co (0,01%), Al-Au
→ Composition knowledge

1 - Principle and Objectives of Reactor Dosimetry

- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

2 - Neutron Spectra and Flux

1 - Principle and Objectives of Reactor Dosimetry

- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

Interactions neutron-matière

Reactions (n, γ) : interaction with neutrons of varying energy (strong response in the thermal domain and epithermal resonances)

Reactions (n, p) & (n, α) : energy threshold usually > 1 MeV – excpetion : ¹⁰B

Reactions (n, f) : fass or thermal responses (resonances in the epithermal domain)

Reactions (n, n') : energy threshold usually 0,4 MeV

Material	Reaction	Energy range	T½
Gold	¹⁹⁷ Au(n,γ) ¹⁹⁸ Au	Thermal + Epithermal	2,7 d
Cobalt	⁵⁹ Co(n,γ) ⁶⁰ Co	Thermal + Epithermal	5,27 y
Indium	¹¹⁵ ln(n,γ) ¹¹⁶ ln	Thermal + Epithermal	54 m
Cobalt/Cd	⁵⁹ Co(n,γ) ⁶⁰ Co	> 0,74 eV	5,27 y
Zirconium/BN	⁹⁴ Zr(n,γ) ⁹⁵ Zr	From 1 keV to 1 MeV	64 d
Neptunium	²³⁷ Np(n,f) ¹³⁷ Cs	>0,6 MeV	30 y
Rhodium	¹⁰³ Rh(n,n') ^{103m} Rh	>0,7 MeV	56 m
Indium	¹¹⁵ ln(n,n') ^{115m} ln	> 1,3 MeV	4,5 h
Niobium	⁹³ Nb(n,n') ^{93m} Nb	> 1,2 MeV	16,1 y
Uranium	²³⁸ U(n,f) ¹³⁷ Cs	> 1,4 MeV	30 y
Nickel	⁵⁸ Ni(n,p) ⁵⁸ Co	> 2,7 MeV	71 d
Zinc	⁶⁴ Zn(n,p) ⁶⁴ Cu	> 2,8 MeV	12,7 h
Iron	⁵⁴ Fe(n,p) ⁵⁴ Mn	> 2,8 MeV	312 d
Copper	⁶³ Cu(n,α) ⁶⁰ Co	> 5,5 MeV	5,27 y
Magnesium	²⁴ Mg(n,p) ²⁴ Na	>6,7 MeV	15 h
Aluminum	²⁷ Al(n,α) ²⁴ Na	> 7,3 MeV	15 h
Vanadium	⁵¹ V(n,α) ⁴⁸ Sc	> 11,5 MeV	1,8 d

Cross Sections Librairies

For Reactor Dosimetry applications:

- IRDFF (AIEA) :
- Systematic covariance matrices
- JANIS 4.0 : www.oecd-nea.org/janis

Effective Cross Sections and Reaction Rates

Westcott formalism and Effective Cross Sections

 $Tx = (\sigma_{O} + \rho (I_{res} + I_{1/v})) * \phi_{2200ms} + \sigma_{(E>1MeV)} * \phi_{(E>1MeV)}$

 $\rightarrow \sigma_{0,\rho}$: tabulated

 \rightarrow Self shielding Correction to use : g_{th} , $g_{res} g_{1/v}$

 $\rightarrow \sigma_{\text{(E>1MeV)}}$: condensed on the effective neutron spectrum

Neutron Calculation codes

→ Energy pointwise / continuous Reaction Rates & Effective XS

Neutron Fluence Measurements

(INTERNATIONAL ATOMIC ENERGY AGENCY. VIENNA, 1970

Decay Data (λ, **Emission Intensities)**

Nuclides : <u>www.nucleide.org/Laraweb</u>

	Reference: INEEL - 2006 Associated data files: Table - Comments - ENSDE - PenNuc										
	Data and emissions file (ASCII text format): <u>Co-60.txt</u>										
	Tools Activity ⇄ Mass con	version: 1000	Bq	≓ 2.391	E-11	g					
	Decay calculation: @ <u>Nuclide</u> (T½) ⁶⁰ Co (5.2711 a) 1	$t_1 = 5.271E0$ a A(t_0) A(t_1) 000 500	▼ Bq								
	Emissions Coincidence threshol Emissions (10 lines) s	ld: 10% orted by decreasing	inten	sity							
	Energy (keV)	Intensity (%)	Туре	Origin*	Lev Start [*]	els <u>End</u> *	Possible coincidence with (ke Possible sum of (levels)	v			
	1 332.492 (4)	99.9826 (6)	Y	Ni-60	1	0	1 173.228 (Σ=2 505.720)				
	1 173.228 (3)	99.85 (3)	Y	Ni-60	3	1	1 332.492 (Σ=2 505.720)				
	826.10 (3)	0.0076 (8)	γ	Ni-60	2	1					
	347.14 (7)	0.0075 (4)	Y	Ni-60	3	2					
	7.47824 (-)	0.0065 (3)	X _{Ka1}	Ni-60							
	7.46097 (-)	0.00334 (12)	X _{Ka2}	Ni-60							
	8.2967 (-)	0.00136 (5)	Х _{К'} β1	Ni-60							
	2 158.57 (3)	0.0012 (2)	Y	Ni-60	2	0					
	0.84 (-)	0.0002 (-)	XL	Ni-60							
	2 505.692 (5)	0.0000020 (4)	Y	Ni-60	3	0	(3→1)+(1→0)				
	<u>Scheme</u> <u>0</u> 27 CO β ⁻ (%) 99.88 0.002	52711 (8) a	<u>%</u>	(keV) 2505.748	10	3 ⁻ 0%					
	0.12	2 1 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 2 8 0 8 0	% ↓ 107 keV	2158.61 1332.508 0	Stable						

Selection criteria

- Suitable energy response range
- Sufficient effective cross-section level
- Radioactive half-life compatible with operating constraints
- Nature and detectability of particles emitted by the excited nucleus (emission probabilities)

1 - Principle and Objectives of Reactor Dosimetry

- 2 Neutron Spectra and Flux
- 3 Nuclear Data

4 – Dosimeters

- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

4 – Dosimeters

- Controlled composition: pure material, alloy or oxides
- Controlled impurities: example of copper (Co<0.1 ppm)
- Controlled dimensions (solid or powder) and mass

 \rightarrow Reduction of uncertainties on "N

Fissiles (Ø 4,6 mm x H 5,0 mm)

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters

5 – Irradiation

- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

5 – Irradiation

Condition d'irradiation

Control:

- Irradiation conditions (duration and flux level) to obtain measurable and manageable activity (ALARA):
 - Integrator behaviour over short time t<<T
 - Saturation Activity t >3T
 - Period of oblivion beyond

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

6 - Activity measurement

Example of measurement of Cs-137 activity from a fissile dosimeter (Np-237 & U-238)

Constraints

Dosimeter for Np-237 and U-238 High Co-60 activity Remote counting geometry Consideration of stainless steel casing thickness

Other methods: chemical dissolution

6 - Activity measurement

2 standard γ - detectors

25 years of Cofrac accreditation

Modelisation/simulation of detectors (TRIPOLI-4, GEANT4, MCNP-6)

2 X - detectors

1 automatic bench (γ)

2 HE γ - detectors

1 mobile γ /X - detector

https://www.youtube.com/watch?v=-ajtgl4eejk

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

Unfolded Neutron Spectrum + Covariance Matrices Reduced Uncertainties (< 5% - k =1)

Effect of the Normalization Process on Correlation Matrices

No added information Addition of correlation issued from the normalization process

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

→ Nuclear test and irradiation reactors (RJH, CABRI, RES, etc.)

- \rightarrow Characterisation of irradiation location spectra and fluences
- \rightarrow Characterisation of spectra and fluences in irradiated devices
- →Analysis of material behaviour under flux (damage, gas, etc.)
- → Characterisation of cores (spectrum, flux levels and profiles, power)
- \rightarrow V&V approach to neutron codes
- \rightarrow Qualification of new core configurations (CABRI)
- \rightarrow Start-up campaign for new reactors (RJH)
- \rightarrow Calibration of other instrumentation (on-line measurements)
- → Monitoring of very short events (power pulses)
- \rightarrow Measurement using Neutron Activation Analysis (NAA) :

→Quantification of low impurity levels (<ppm)

→ Nuclear Power Reactor (NPP)

- \rightarrow Monitoring damage to the reactor vessel under irradiation
- \rightarrow Core characterization (spectrum, flux levels and profiles, power)
- \rightarrow V&V of neutron protection codes (TRIPOLI 4)
- → Calibration of other instrumentation (on-line measurements) : EPR AMS
- \rightarrow Estimation of residual activity in structures / dismantling
- \rightarrow Accelerators Beam calibration
- → Accident situation: SNEAK devices to assess the fluence emitted in a criticality accident

Mapping of thermal flux for the CABRI start-up With Au dosimeters

Characterization of a reactor configuration: FLUOLE 2 experimental program in EOLE reactor facility (2014 - 2015)

More than 800 dosimeters measured for the V&V of a TRIPOLI4® based reactor modelling scheme

EPR-AMS system

<u>cea</u>

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

Enriched 117Sn

C. Destouches "Review of nuclear data improvement needs for nuclear radiation measurement techniques used at the CEA experimental reactor facilities" Wonder EPJ Web of Conferences 111 01002 (2016)

Improvement in measurements of X-ray emitter activity (ex Nb)

C. Domergue et al. "Improvement of the activity measurement method for solid dosimeters emitting x-rays" ICRM 2017

J. Riffaud et al. "Measurement of ^{103m}Rh X-ray emission intensities and evaluation of the decay scheme" ICRM 2017

RETROSPECTIVE - DOSIMETRY

Direct measurement of the activity induced by neutrons on a sample taken from a device of interest (hot spot in the vessel, internals, screw, etc.).

- 1 Principle and Objectives of Reactor Dosimetry
- 2 Neutron Spectra and Flux
- 3 Nuclear Data
- 4 Dosimeters
- 5 Irradiation
- 6 Activity measurement
- 7 Interpretation of measurements
- 8 Examples of applications
- 9 Areas for development
- 10 Summary and outlook

10 - Summary and outlook

Reactor Dosimetry

- Reference post-mortem measurement for determining neutron fluence:
 - Accurate
 - Absolute
 - Enables the neutron spectrum to be characterised
- Requires considerable expertise to carry out successfully:
 - Measurement
 - Modelling
 - Nuclear data
- Historical method for determining fluxes/fluences, but still relevant today (EPR) and being developed further:
 - Retro-dosimetry
 - X-measurement
 - Epithermal dosimetry
 - High dose and T° dosimeters
 - Modelling
 - High energies (fusion, accelerators) ... (IRDFF) 3

We are not measuring a neutron flux but a reaction rate. This gives a flux/fluence value

Thank you !