

Radiation detection and measurement for non-destructive characterization and control in nuclear media.

Abdallah Lyoussi CEA/DES/IRESNE Senior Fellow IEEE Distinguish Lecturer Abdallah.lyoussi@cea.fr

LIMMEX

Rabat Educom Instrumentation Summer School; Univ Of Rabat, July 1st-11th 2024

DE LA RECHERCHE À L'INDUSTRIE

□ INTRODUCTION

□ Specific features, constraints and requirements

- Examples of radiation measurements and associated instrumentation for :
 - In Pile Measurements
 - Radioactive waste characterization and control
- □ Conclusions and prospects

DE LA RECHERCHE À L'INDUSTRIE

RADIATION DETECTION & MEASUREMENTS: APPLICATION DOMAINS / SUB-DOMAINS

DE LA RECHERCHE À L'INDUSTRI

NUCLEAR REACTORS

2 Main Families

Experimental and Research Reactors :

- Zero Power Reactors ZPR (Eole, Minerve, Masurca, LR0...)
- Material Research Reactors MTRs (Osiris, JHR, BR2, Maria, ATR...)
- Research Reactors (ILL, Orphée, TRIGA)
- Safety Study Reactors (Cabri, Treat...)
- Reactors for special applications (RES)
- Research and Education Reactors (Ulysse, Minerve, ISIS, TRIGAs...)

Nuclear Power Reactors NPPs :

- GEN II (REP, REB ...)
- GEN III et III+ (AP600, EPR, AP1000 ...)
- SMR, AMR
- GEN IV (SFR...)

DE LA RECHERCHE À L'INDUSTRI

Nuclear Fuel Cycle

Instrumentation & measurement are key aspects for control & characterization

DE LA RECHERCHE À L'INDUSTR

Main in-pile measurements

Conventional measurements

INSTRUMENTATION & MEASUREMENTS IN NUCLEAR MEDIA

Dosimetry, Gamma and X-ray spectrometry, Gamma and X Imaging, Neutron Imaging, Alpha radiography, Beta spectrometry, passive & active neutron measurement, PNAA, DNAA, Photon interrogation.

CHALLENGES FOR INSTRUMENTATION & MEASUREMENTS IN <u>NUCLEAR ENVIRONMENTS</u>

Reliable

impossible or difficult maintenance on irradiated objects

Accurate despite a very severe environment

to follow modelling progress; ex: μm dimensional measurements, ΔT<5°C

flux: few mm available

narrow location to get maximal nonservative Corrosion resistant operation in press: patternet water, high to water, high temperature gas, liquid metals...

High temperature resistant

> 300°C, up to 1600°C

Neutron $I \gamma$ "resistant" dose > 15kGy/s and > 10dpa/y

□ INTRODUCTION

□ Specific features, constraints and requirements

Examples of radiation measurements and associated instrumentation for :

- In Pile Measurements

- Radioactive waste characterization and control
- □ Conclusions and prospects

Reminder :

Main Aim of Nuclear Reactor Measurements : To reduce uncertainties

To <u>reduce uncertainties</u> at <u>each step</u> of the process; **from conceptual design to final running of nuclear system(s)**

Online Monitoring

Monitoring & Control in NPP

Basic/Fundamental Data

Measurement of Basic Physical Data

In Pile Meāsurements, Qualification and Testing in MTRs DE LA RECHERCHE À L'INDUSTRIE

What are the Objectives of a MTR (Material Testing Reactor) ?

Out of pile part

MTR allows to reproduce on a small scale, real power plant conditions and in some cases, more severe conditions for

Material screening (comparison of materials tested under representative conditions)

Material characterization (behaviour of one material in a wide range of operating conditions, up to off-normal and severe conditions) Fuel element qualification (test of one / several fuel rods (clad+fuel)) DE LA RECHERCHE À L'INDUST

JULES HOROWITZ (JHR) MTR REACTOR

Reflector

 $\Phi \ge 5.5 \ 10^{14} \text{ n/cm}^2.\text{s}$ 20 fixed locations 6 mobile locations

Thermal neutron flux

Applications :

Material and fuel samples irradiation/ageing Radio-isotopes production for medical use

Geometry:

From 34 to 37 cylinder-shaped fuel assemblies U3Si2-Al fuel enrichment of 19,75% then 27% Aluminum racks (hosting all the fuel assemblies) Hafnium control rods (in the center of fuel assemblies) Beryllium reflector

Core

 $\Phi \ge 5.5 \ 10^{14} \text{ n/cm}^2.\text{s} > 1 \text{ MeV}$ $\Phi \ge 10^{15} \text{ n/cm}^2.\text{s} > 0.1 \text{ MeV}$

IN-PILE MEASUREMENTS

Nuclear Radiation Detectors

On-line radiation detectors

For nuclear reactor neutron detection and measurement

On-line radiation detectors

Nuclear Radiation Detectors

On-line radiation detectors

For nuclear reactor neutron detection and measurement

On-line radiation detectors

Fission chambers

Online and real-time neutron flux measurement :

- Absolute/relative Measurements
- ✓ Amplitude of 10⁶ to 10¹⁵ n.cm⁻²s⁻¹
- ✓ Absolute or relative measurement (axial flux profile)

Principle: Measurement of the current generated by fission reactions in a fissile material (generally U_{235}) deposited on an electrode

On-line Neutron measurements

CEA – Cadarache Fission Chamber Workshop

Design and Realization of sub-miniature fission chambers

- Characterized fissile deposits (mass/composition)
 Optimized and dedicated Geometries
- High temperature operation (> 400°C)

FC Ø 1,5mm / 4mm / 8 mm

3-Bodies FC

On-line Neutron measurements

PAGE 25

e haa dikaa maxadii da baxadaa ahii ta

4.38

4.39

4.34

4.35

[ms]

Current Mode

SPECTRON

MONACO

Mesure Incore

Pour les REP: Chambre à fission mobile (CFUF43) associée à une mesure du courant moyen via un câble minéral

Pour le réacteur RES (propulsion nucléaire): Chambre à fission (CFUR64) associée à une mesure grande dynamique (modes impulsion, fluctuation et courant et via un câble minéral

Fond de cuve d'un réacteur de 1300 MWe

235U Fission Chamber : Predominant response to n_{th}

Fast Neutron Detector System - FNDS

Problématique

→ Measurement of neutron flux >1MeV is an indicator of Material Damage (dpa)

DE LA RECHERCHE À L'INDUSTR

Cea Chambre à fission pour neutrons rapides

Fast Neutron Detector System - FNDS

I-SMART : European Project aimed to develop and test advanced solide state sensors & measurement system for selective n- γ detection in Severe Media

Why SiC and Diamond for Nuclear Detection ?

Property	Si	GaN	Diamond	4H-SiC
Bandgap (eV)	1.12	3.45	5.5	3.27
Break down field (MV cm ⁻¹)	0.3	2	10	3
e-hole creation energy (eV)	3.6	8.9	13	7.78
Threshold displacement energy (eV)	13-20	10-20	40-50	22-35
Thermal conductivity (W/cm·K)	1.5	1.3	22	4.9

- The main advantages of SiC and Diamond :
- □ <u>Wide band gap</u> : low leakage current
- □ <u>High breakdown field</u> : fast response (ns)
- □ <u>High Energy threshold of defect formation</u>: stability versus radiations
- □ <u>High thermal conductivity</u> : no cooling system required
- **Carbon** : good neutron/gamma discrimination
- **Epitaxial Growth control** (for SiC) : low defect concentration

DE LA RECHERCHE À L'INDUSTRIE

SiC : lower intensity (thinner SCR), Si-related peaks

DE LA RECHERCHE À L'INDUSTR

Thermal Neutron Detection / Tested @ Minerve ZPR reactor

□ INTRODUCTION

□ Specific features, constraints and requirements

- Examples of radiation measurements and associated instrumentation for :
 - In Pile Measurements
 - Radioactive waste characterization and control
- □ Conclusions and prospects

Radioactive Wastes Characterization & Management

Non Destructive Measurements (NDM)

Passive Measurements

- photons : Dose rate, gamma spectrometry, gamma tomography
- neutrons : Global counting, neutron coincidences counting and neutron multiplicities counting.

Actives measurement

- Photon/Neutron Transmission Imagery/Radiography
- Neutron Interrogation ⇒ fission prompts and delayed neutrons, Gamma rays emission from (n,n'γ), (n,γ) and following neutron activation reactions (n,p), (n,α)...
- Photon interrogation ⇒ delayed neutrons and gamma from photofission, Gamma rays from photon activation

DE LA RECHERCHE À L'INDUSTRI

MEASUREMENT & INSTRUMENTATION FOR NDA

DE LA RECHERCHE À L'INDUSTRI

MEASUREMENT & INSTRUMENTATION FOR NDA

Active neutron measurement

DE LA RECHERCHE À L'INDUSTR

MEASUREMENT & INSTRUMENTATION FOR NDA

Active Photon Interrogation

developments to be enhanced I

CONCLUSIONS

- Important R&D efforts are maintained on instrumentation an measurement dedicated to existing and future Research Reactors (JHR,...)
- As codes and nuclear data get more and more accurate, nuclear instrumentation should be continuously improved in terms of:
 - **Uncertainties** and **Precision** \rightarrow Absolut measurements
 - Reliability to support high fluence (up to 100dpa !) and temperatures
 - Measuring and Interpretation Processes (online / combined measurements)
- Due to the closing of several irradiation facilities and the disappearance of the associated teams, collaborations are a favoured way for instrumentation

An attention should paid for Nuclear Data which are often not enough developed for instrumentation needs (e. g. charged particles)

FINALLY...

Maintain and enhance efforts on Research and Innovation in :

- □ High temperature measurements (500°C up to 1000°C).
- High radiation level measurements
- High count rate measurements
- \Box Selective radiation measurements n, γ
- □ Neutron spectrum measurements
- Material and electronics hardening
- Integrated electronics
- □ Multiplexing
- □ Integration probes
- Accurate modeling/calculation tools (nuclear data library "corrections")
- Real time data acquisition
- Combined measurements and cross interpretation and analy
- Uncertainties treatment, analysis and reduction
- Data mining, Algorithmic, Machine learning, Artificial Intelligence
 Numerical Twins

eroball Measurement System Schematic Setup

leasuring Table with 10 x 36 D

ANIMMA

9th International Conference on Nuclear Instrumentation and Measurement

DE LA RECHERCHE À L'INDUSTRIE

THANK YOU

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are, if doesn't agree with experiment, it is wrong." Richard Feynman (1918-1988)

