

Dose calibrator quality control

Hind Saikouk^{1,2}

¹:Faculty of science of Rabat, Mohammed V University, Morocco

²: Medical physicist, Nuclear medicine department, Hematology and oncology hospital, Mohammed VI University Hospital, Marrakesh

Email: saik.hind@gmail.com

Nuclear medicine

- Nuclear medicine is a medical specialty where radiopharmaceuticals are used for diagnosis or treatment
 - Radiopharmaceutical: radionuclide bonded to a "carrier" molecule
 - Example: Tc99m-HMDP, Tc99m-MIBI, F18-FDG, I131
 - Diagnosis: X, gamma and β + emitters (annihilation photons)
 - Therapy: metabolic radiotherapy: β and α emitters

Nuclear medicine procedure

Dose calibrator

• Gaz filled detector: Ionization chamber

Dose calibrator

Dose calibrator internal walls (can be removable)

Dose calibrator dipper

General characteristics

- Filling gas is pure Argon under pressure (typically 1-2 MPa)
- Chamber constructed in Aluminum
- The chamber is shielded with Lead, typically 3 10 mm, to reduce interference from external radiation
- Measurement of activity in samples radiopharmaceuticals: one sample per measurement
- High detection efficiency for X and gamma,
- Low detection efficiency to β particles: response from bremsstrahlung radiation
- Activity range: up to 100 GBq
- Short time for stable response: 2-10 seconds
- Activity may vary depending on the position and the shape of the sample: Correction factors
- Biasing voltage: depends on the manufacturer (160 V for Lemerpax, 150 V for Capintec, 450 V for Atomlab)

Dose calibrator: quality controls

- Routine quality controls: Zero adjustment, background, biasing voltage
- Daily: Constancy
- Annual: Repeatability, accuracy, reproducibility, linearity

Daily QC

Routine QC

- Zero Adjustment
 - Response of the electrometer when the output of the ionizing chamber is short-circuited
 - No source is inside the ionizing chamber
 - No contamination is detected
 - The value should not exceed 3,7 MBq
- Biasing voltage
 - Verification of the value of the voltage applied on the ionizing chamber
 - Avoid falling on the recombination region
 - Should not exceed $\pm 10\%$ of the constructor value
- Background
 - Even if the source holder is empty, the dose calibrator will still record an 'activity' due to background radiation
 - The current value in the absence of any radioactive source
 - No source is inside the ionizing chamber
 - No contamination is detected
 - Should not exceed 100 fA
 - An increase of 20% above the limit should call for further investigation

Routine QC

- Measurement of the capacity of the radionuclide activity meter to give reproducible response on day-to-day basis with good precision
- Protocol:
 - Use of long lived reference source (constancy sources: Co57, Cs 137, Ba 133)
 - Put the source inside the ionizing chamber well using tongs
 - Measure the activity of the source with the desired radionuclide setting (ex: Tc99m)
 - Compare the measured activity to the calculated activity (corrected for the radioactive decay)
 - The **percent deviation** should not exceed **5%**

Radionuclide	Half-life	Energy	Activity of reference	Date of reference
Co57	271,79 days	122 keV (85%)	204 MBq	01/05/2014 at 12h
Cs 137	30,17 years	662 keV (85%)	6,967 MBq	01/05/2014 at 12h
Ba133	10,574 years	356 keV (62%)	8,569 MBq	01/05/2014 at 12h

Cs 137 sealed source

Annual QC

Reproducibility

- Measurement of the instrument precision and verification that reproducible readings are obtained when some measurement conditions are changed:
 - Taking repeated measurements of the same source
 - The source is removed between measurements
 - 30 activities are recorded
 - Calculate the mean and the standard deviation of the obtained values
 - Relative standard deviation (RSD) should not exceed 1 %

$$RSD = \frac{\sqrt{\sum_{i=1}^{n} (A_i - \bar{A})^2}}{\frac{n-1}{\bar{A}}}$$

Where: A_i is the individual measured activity \overline{A} is the mean activity n is the number of measurements

Reproducibility

Insert the Cs 137 source

Measure the activity

Remove the source from the well

Re-insert the source and repeat the same procedure for 30 times

Accuracy and repeatability

- Measurement of the instrument accuracy and precision under the same measurement conditions:
 - Place the source (ex: Cs137) inside the ionizing chamber well using the tongs and the dipper
 - Take 30 successive measurement
 - **Repeatability**: Calculate the mean and the relative standard deviation of the obtained values
 - **Relative standard deviation** should not exceed 0,2%
 - Accuracy: the mean measured activity should not exceed $\pm 10\%$ of the calculated activity (corrected for the radioactive decay)

Accuracy and repeatability

Repeat measurement for 30 times with the source inside the dose calibrator well

Linearity

- The capacity of the radionuclide activity meter to provide a linear response over the range of activities to be used
- Use a short-lived radioactive source (ex: Tc99m) with the maximum activity used for patients (5,5 GBq)
- Note down the initial activity and time
- Repeat measurements every 2-3 hours for a period greater than the radionuclide half-life
- Stop the measurement when the activity reach 1 MBq
- The percent deviation should not exceed 5 %
- Plot the decay curve, extract the measured half-life
- Plot the decay curve over a logarithmic scale
- Inspect the linearity over the ranges of activities

Linearity

Repeat measurement every 2-3hours until the activity reach 1 MBq

Put the source inside the dose calibrator well

Linearity

Exercices

Radionuclide	Corrected activity (MBq)	Measured activity (MBq)	Percent deviation (%)	Observation	Reference date
I 131	7.88	7,87			08-02-2018
Ga 67	24.46	24.43			08-02-2018

Reproducibility

Radionuclide	Mean measured activity (MBq)	Standard deviation	Relative standard deviation
Cs137			

Maasumant	
Measurement	
number	Activity (MBq)
1	6,234722
2	6,25317849
3	6,16243738
4	6,26879877
5	6,27718934
6	6,15600639
7	6.24147112
8	6.17379196
9	6 1979407
10	6 23802236
11	6 22024126
11	0,23924120
12	6,23866306
13	6,22472391
14	6,23304753
15	6,20668997

6,18819224 6,26073004 6,27576753 6,1683923 6,18988478 6,22705656 6,24120439 6,20420226 6,22455433 6,16590584 6,28767824 6,22503701 6,25237324 6,22989113 6,20708422 6,24897306

Accuracy and repeatability

- Cs137 constancy source was used for the repeatability and accuracy quality controls. The source reference activity and date are: 6,9671 MBq, May 1st, 2014.
 - Calculate the accuracy and determine the repeatability

Measurement number	Activity (MBq)	16
1	6,72033313	10
2	6,75166108	18
3	6,71525389	10
4	6,71667389	20
5	6,72359055	20
6	6,71434688	22
7	6,71723403	23
8	6,70001667	24
9	6,71056049	25
10	6,70092719	26
11	6,70860886	27
12	6,70444695	28
13	6,70829156	29
14	6,72145582	30
15	6,69003269	

16	6,72760752
17	6,70368079
18	6,7158435
19	6,69912645
20	6,71589348
21	6,73286001
22	6,7086886
23	6,72727678
24	6,71992024
25	6,72121036
26	6,71955771
27	6,71054685
28	6,69964672
29	6,71730475
30	6,72366005

Accuracy and repeatability

Accuracy

Radionuclide	Calculated activity	Mean measured activity (MBq)	Difference
I 131			

Repeatability

Radionuclide	Mean measured activity (MBq)	Standard deviation	Relative standard deviation
I 131			

IAEA-TECDOC-317

۹

QUALITY CONTROL OF NUCLEAR MEDICINE INSTRUMENTS

A TECHNICAL DOCUMENT ISSUED BY THE

INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1984

Laboratoire National Henri Becquerel œ li/t LNE-LNHB Guide d'utilisation et de contrôle qualité des activimètres

NT LNHB 2006/033 - Juin 2006

Comité de rédaction

• CEA/Laboratoire National Henri Becquerel

Philippe BLANCHIS, coordinateur Marie-Noëlle AMIOT Muriel MOUNE Laboratoire National Henri Becquerel

· Société française de physique médicale

Sfpm Since Antoine MARTINEAU Marcel RICARD

· Société française de radiopharmacie

. £

Sophie BONNOT-LOURS Agnès DUMONT Valérie LEMERCIER Nathalie RIZZO-PADOIN