

Scintillators for nondestructive assay in industrial and security applications

Bertrand PEROT, CEA Fellow – CEA DES IRESNE, DTN/SMTA – Nuclear Measurement Lab

- **1. NUCLEAR MEASUREMENT LAB**
- **2. X-RAY IMAGING**
- **3. GAMMA-RAY SPECTROSCOPY**
- **4. NEUTRON MEASUREMENTS**
- **5. NEUTRON & PHOTON ACTIVATION**
- **6. CONCLUSION & PROSPECTS**

Introduction

The Nuclear Measurement Laboratory

- **CEA**, DES Energy Division, IRESNE institute at CEA Cadarache
- **25-30** permanent staff + 5-10 PhD, trainees, temporary contracts
- **50 60** projects or collaborations on R&D and applications

Cadarache

Non-destructive Nuclear Measurements

□ Radiological characterization

- ✓ Gamma-ray spectroscopy
- ✓ Passive and active neutron measurements
- ✓ Photofission

Physical characterization

- Photon radiography and tomography
- Neutron radiography

Elemental characterization

- Thermal neutron activation analysis
- ✓ Fast neutron activation analysis

Applications

□ Nuclear fuel cycle

- Uranium mining, enrichment, fuel fabrication & reprocessing
- Radioactive waste characterization
- Dismantling and decommissioning

Reactors

- Non-destructive exams for Jules Horowitz Reactor
- Nuclear accident studies and monitoring

Homeland Security and Safeguards

- CBRNE threats detection
- Nuclear material controls

□ Waste recycling

Characterization of valuable materials

Scintillators for X-ray imaging

High energy X-ray imaging in CINPHONIE casemate

High energy X-ray imaging of large concrete drums

Concrete waste package

- Density > 2 g/cm³
- Mass > 1,2 ton
- H = 120 cm
- Ø = 84 cm

<< 1 s per radiography

but due to mechanical movements

- > Radiography \approx 10 min
- ▶ Tomography \approx 25 min

Radiography

Tomography

Detailed expertise of a large concrete drum

500 I waste blocked in a concrete matrix (external volume 1.2 m³)

Radiographies (duration 10 min)

High energy X-ray radioscopy

Dynamic radiography

- ➢ Original camera 50 pictures / sec − 230 × 240 pixels
- > With 4 modern cameras \Rightarrow up to 200 pict/s 2560 × 2160 pixels

Application to corium / water interaction

⇒ MC3D code validation (nuclear accident studies)

In yellow: 9 MeV LINAC In black : imaging plate

« ICE » Project on Water-Corium Interaction

R&D on high resolution fast scintillation screens

								Spatial re	solution versus sens	itivity	▲ Medey
Scintillator	Density	Thickness	Surface	Average	Wavelength			•		-	• WICUCK
	(g/cm^3)	(mm)	density	Light yield	Peak	່ ຣ ¹⁴⁰⁰ [Lanex
			(mg/cm^2)	(photons/MeV)	(nm)	1200 -					LYSO
Medex (GOS)	4.45	0.780	347	65000	545	i 1000			3		
Lanex (GOS)	4.62	0.290	134	65000	545	600 Hi					: 🕂 Csl
CsI:Tl	4.51	2	902	54000	546	400 -	— Ж		CsI(TI)		🗶 GLO
BGO	7.13	3	2139	9000	480	200 -			selected		e BGO
LYSO	7.25	20	14500	30000	420	ר <mark>אַ</mark> 0 ס		0.5	1	1.5	
GLO	9.10	1.58	1438	55000	589			Se	nsitivity		

cea

R&D on high resolution linear detectors

Historical system = 25 CdTe collimated detectors

3 mm bubbles, 2 mm cracks

	Scintillator	density ρ <i>(g/cm³)</i>	Photon yield (ph/MeV)
	GLO (GD _{0,3} Lu _{1,6} Eu _{0,1} O ₃)	9.1	55 000
Scintillators typically used in imaging systems	CsI(TI)	4.5	54 000
	CdWO ₄	7.9	20 000
	Gadox (GOS GD ₂ O ₂ S:Tb)	4.5	55 000

□ Objective: high resolution imaging 200 µm

□ Analysis of small objects and defects (bubbles, cracks...)

□ Comparative study of linear detectors to replace the collimated CdTe detectors ⇒ reduced acquisition time

⇒ GLO (if available), CdWO₄ or CsI(TI) scintillators

TOMIS mobile high-energy tomography

□ 9 MeV LINAC, 30 Gy/min @ 1 m
□ Integration in a 40 feet sea container
□ High performance CdWO₄ linear detector
□ 5.5 tons mechanical bench, up to 1.8 m³
□ Self-shielded LINAC ⇒ small footprint (restricted area)
⇒ In situ imaging of legacy concrete waste packages

Lower shielding

Mechanical bench

TOMIS in situ implementation

Commissioning and first measurements in 2024

Scintillators for gamma-ray spectroscopy

HPGe \Rightarrow gold standard in gamma spectroscopy

But many other gamma detectors are available

Liquid nitrogen cooled HP Ge

Portable HP Ge (electric cooling)

CdTe, CdZnTe

Nal(TI)

CeBr₃

BGO (Bi₄Ge₃O₁₂)

LaBr₃(Ce)

Energy resolution vs. efficiency

□ HPGe is the standard of gamma spectroscopy

⇒ Pu isotopic composition, spent fuel, nuclear accidents, etc. (many peaks)

□ But scintillators are preferred in many instances

for their robustness, efficiency/cost ratio, fast timing... ⇒ radioactive waste (few peaks), cleaning and dismantling, uranium mining, online analysis, security...

19

Alpha-beta-gamma scintillators for D&D

Nal(TI) spectrum analysis with energy bands

 Patent application FR2210553
 Salvador et al., Low and high resolution gamma-ray spectroscopy for the characterization of uranium contamination, submitted to NIM A, NIMA-D-24-00254

	HPGe (reference)	Nal(TI)	
Acquisition time	64 h	15 min	
U surface activity	(7.47 ± 0.75) Bq.cm ⁻²	(9.8 ± 1.4) Bq.cm ⁻²	
U enrichment	(0.83 ± 0.07) %	(0.73 ± 0.15) %	

<u>cea</u>

Uranium mining \Rightarrow gamma scintillators for samples, logging probes, truck portal monitors, conveyor belts

Uranium chain gamma emissions

Disequilibria in U chain (U vs. Ra differential leaching in roll fronts)
⇒ U grade over/under estimated by total gamma counting

Disequilibrium => HPGe spectroscopy in the lab

Low intensity of the 1001 keV ray ⇒ long measurement (hours) Low energy of ²³⁴Th gamma rays ⇒ large attenuation effects

Gamma spectroscopy on samples: from Ge to Nal

New U-grade measurements (faster than with 1001 keV line and HPGe)

- 1. HPGe high-resolution spectroscopy
 - 92 keV $\gamma\text{-ray}$ of ^{234}Th
 - 98 keV self-induced fluorescence X-ray

2. Nal(TI) low-resolution spectroscopy : count rates in energy bands (C_U and C_{Rn})

25

Energy-band approach with Nal(TI)

T. Marchais, B. Pérot, C. Carasco, P-G. Allinei, H. Toubon, R. Goupillou, Y. Bensedik, Low-resolution gamma spectroscopy of uranium ores to determine U concentration and U/Rn imbalance, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 4, APRIL 2022, DOI 10.1109/TNS.2021.3129343

Logging probes with gamma scintillators

Development of new spectroscopic methods

B. Pérot, T. Marchais, P.-G. Allinei, H. Toubon, Y. Bensedik, R. Goupillou, A. Berland, Development of Gamma Spectroscopic Tools for Uranium Ore Samples and Borehole Exploration, 2022 IEEE Nuclear Science Symposium, 5 – 12 November 2022, Milano, Italy

<u>cea</u>

Approaches using the entire spectrum

•

٠

٠

200 400 600 800 1000 1200 1400

Teneur U

0.25 0.50 0.75 1.00 1.25 1.50 1.75

Déséguilibre

Scintillators for passive neutron coincidence counting

Main neutron detectors

³He proportional counter is the gold standard in radioactive waste and nuclear material characterization, nuclear process monitoring, homeland security, etc.

	· · · ·	Montron	Incident	Detection	Commo Boy	
Detector		Active	Neutron	Efficiency ^a	Sensitivity (R/h) ^b	
Туре	Size	Material	Energy	(%)		
Plastic scintillator	5 cm thick	¹ H	1 MeV	78	0.01	
Liquid scintillator	5 cm thick	¹ H	1 MeV	78	0.1	
Loaded scintillator	1 mm thick	⁶ Li	thermal	50	1	
Hornyak button	1 mm thick	1 H	1 MeV	1	4 1 - 1	
Methane (7 atm)	5 cm diam	1 H	1 MeV	1	1	
⁴ He (18 atm)	5 cm diam	⁴ He	1 MeV	1	<u>1</u>	
³ He (4 atm), Ar (2 atm)	2.5 cm diam	³ He	thermal	77	1	
3 He (4 atm), CO ₂ (5%)	2.5 cm diam	³ He	thermal	77	10	
BF ₃ (0.66 atm)	5 cm diam	^{I0} B	thermal	29	10	
BF ₃ (1.18 atm)	5 cm diam	¹⁰ B	thermal	46	10	
¹⁰ B-lined chamber	0.2 mg/cm^2	10 _B	thermal	10	10 ³	
Fission chamber	2.0 mg/cm^2	²³⁵ U	thermal	0.5	$10^6 - 10^7$	

Passive Non Destructive Assay of Nuclear Materials, Los Alamos National Laboratory, NUREG/CR-5550, 1991

Neutron

Passive neutron measurements with ³He counters

Coincidences counting

Spontaneous fission neutrons only ⇒ ^{242 and244}Cm, ^{238, 240 and 242}Pu (+ ²³⁸U)

Alternatives to ³He counters \Rightarrow PVT plastic scintillators \checkmark

B. Simony, C. Deyglun, B. Pérot, C. Carasco, N. Saurel, S. Colas, J. Collot, Cross-talk characterization in passive neutron coincidence counting of radioactive waste drums with plastic scintillators, IEEE Transactions on Nuclear Science, Vol. 63, No. 3, June 2016

cea

Scattering cross talk mitigation

Principle

suppression of the 2nd pulse in double detections in adjacent detectors within ∆t

B. Simony, C. Deyglun, B. Pérot, C. Carasco, N. Saurel, S. Colas, J. Collot, Cross-talk characterization in passive neutron coincidence counting of radioactive waste drums with plastic scintillators, IEEE Transactions on Nuclear Science, Vol. 63, No. 3, June 2016, pp. 1513-1519

Validation in the lab with 118 L mock-up drums

- 16 PVT scintillators 10 cm ×10 cm ×100 cm
- ➢ ¹³⁷Cs, ⁶⁰Co, ²⁵²Cf, AmBe sources, Pu samples
- ➢ 5 cm lead shield
- FASTER electronics (CNRS)

Mock-up drums filled with iron or wood matrixes

V. Bottau, C. Carasco, B. Perot, C. Eleon, R. De Stefano, L. Isnel, I. Tsekhanovich, Detection of Fission Coincidences With Plastic Scintillators for the Characterization of Radioactive Waste Drums, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 69, NO. 4, APRIL 2022, pp. 818-824, DOI 10.1109/TNS.2022.3144346

Coincidence Multiplicity analysis

Cez

V. Bottau, et al, Sorting fission from parasitic coincidences of neutron and gamma rays in plastic scintillators using particle times of flight, ANIMMA 2021 International Conference, Prague, Czech Republic, EPJ Web of Conferences 253, 07014 (2021)

SNR improvement using 2D TOF maps (patented)

* After neutron and gamma scattering cross talk rejection

V. Bottau, et al, Sorting fission from parasitic coincidences of neutron and gamma rays in plastic scintillators using particle times of flight, EPJ Web of Conferences 253, 07014 (2021)
 V. Bottau, et al., Detection of Fission Coincidences With Plastic Scintillators for the Characterization of Radioactive Waste Drums, IEEE TNS VOL. 69, NO. 4, APRIL 2022

Scintillators for neutron & photon activation analysis

Traditional HPGe neutron activation analysis)

□ Pulsed neutron generator + HPGe
→ Prompt Gamma Neutron Activation Analysis (PGNAA)

□ Toxic chemicals (water, soils, rad-waste...), recycling (batteries, permanent coils, e-waste...)

Fast neutrons during the pulses \Rightarrow (n,n' γ)

Thermal neutrons between pulses \Rightarrow (n, γ)

(+ delayed gamma rays of activation or fission products after irradiation)

E. Mauerhofer et al. Quantitative comparison between PGNAA measurements and MCNP calculations in view of the characterization of radioactive wastes in Germany and France, CAARI 2012, 22nd International Conference on the Application of Accelerators in Research and Industry, August 5 – 10, 2012, Fort Worth, Texas, USA. AIP Conf. Proc. 1525, 432 (2013)

Large Nal scintillators (5"x5"x10") vs. HPGe (30 %)

Pulsed NAA with scintillators

Gamma coincidences with large Nal(TI) scintillators

2000

4000

E2 (keV)

cea

J. Roult et al, Experimental γ Coincidence spectra recorded in PGNAA, submitted to JRNC-D-24-00414

1000 2000 3000 4000 5000 6000 7000 8000 E (keV)

8000

E1 (keV)

6000

SODERN's online elemental analyzer for cement, coal and mining industries with **BGO** scintillators

(spectrum unfolding \Rightarrow see next slide)

NAA with the Associated Particle Technique (APT)

Unfolding (with a calibration database)

Organic Materials identification with APT

С

Explosives

Drugs

Benign

Ŧ

32

4⁵46

Different scintillators used with APT

Cargo containers ⇒ large 5"x5"x10" Nal(TI)

Chemical warfare detection ⇒ 3"x3" LaBr₃(Ce)

Nuclear material detection ⇒ large PVT panels

Coincidences between 1 α + 3 (n or γ)

Submarine explosive detection ⇒ 3"x3" LaBr₃(Ce)

44

B. Pérot, G. Sannié, Détection neutronique de matières illicites : technique de la particule associée, Editions Techniques de l'Ingénieur, RE 177, février 2015 B. Pérot, C. Carasco, et al., Sea Container Inspection with Tagged Neutrons, EPJ Nuclear Sci. Technol. 7, 6 (2021), <u>https://doi.org/10.1051/epjn/2021004</u>

Photofission delayed gamma rays \Rightarrow U, Pu characterization

15-20 MeV LINAC with its shielded head

Highly shielded HPGe

Irradiation 2h

HPGe acquisition 2h

Energy (keV)

45

Manon Delarue et al., Localization of nuclear materials in large concrete radioactive waste packages using photofission delayed gamma rays, ANIMMA 2021 International Conference, June 2021, Prague, Czech Republic, EPJ Web of Conferences 253, 08003 (2021)

<u>cea</u>

Using a LaBr₃(Ce) scintillator in pulsed irradiation

Energy (MeV)

Energy threshold	Net counts from ²³⁸ U	Background counts	Net counts / background
2	544017 <u>+</u> 826	69371	8
2.5	308041 ± 599	25434	12
3	171349 <u>+</u> 429	6496	26
3.5	92585±310	1824	51
4	48954 <u>+</u> 226	1184	41
4.5	24960±164	1004	25
5	12357±118	866	14

<u>cea</u>

C. Carasco et al. Photofission delayed gamma-ray measurements in a large cemented radioactive waste drum during LINAC irradiation, NIM A 1053 (2023) 168360

irradiation

2000

1 s of counting

2500

3000

Time (ms)

Conclusion and prospects

Conclusion and prospects

Many advantages for scintillators

- Fast timing, high count rates, high efficiency, low cost, rugged, no cooling, many shapes...
- ⇒ Appropriate for a wide range of in situ and online applications

Constant innovations

- Developments of scintillation materials, setups (mixtures of scintillation materials, light guides, optical fibers, segmented detectors, multi-anodes PM, SiPM, ...), fast numeric electronics, onboard signal processing (PSD, CFD, coincidences, ToF...), etc.
- Improvements in time and energy resolutions, detection efficiency, throughput (small count losses at high count rates), specificity (e.g. by loading organic scintillators with B or Li, or coating with Cd or Gd to detect thermal neutrons, n/γ discrimination using pulse shape or detection times, ...), spatial selectivity with segmented light readout, segmented detectors, large scintillator arrays at reasonable cost...
- Machine learning, ANN and other mathematical approaches to counterbalance some drawbacks such as the poor spatial and energy resolutions, cross talk, γ sensitivity, etc.

⇒ More and more applications open up for scintillators

THANK YOU

bertrand.perot@cea.fr

