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The aim is to introduce and discuss some key statistical concepts



Classical measurements

• The determination of the size or magnitude of some physical entity

or

• Comparison of an unknown quantity with some known quantity of the same kind



The physical entity to be measured can be assed to be fixed. It can, of course, vary with time but at each instant 
it has a fixed value.

The measurements are affected by fluctuating parameters that cause their exact value to be undetermined, but 
their variations can be described by a probability distribution function (pdf)

The distribution can not be determined by one measurement

you need several measurements,

infinitely many for a exact determination, but 

a smaller number, a sample, can be sufficient for an approximate determination

However, sometime the distribution can be deduced from physics



Thus in a measurement, it is important to identify the pdf of the result 

If this is not possible - one must at least characterize the pdf as well as possible 

The most important parameter is position, then width, skewness, etc.

(these parameters can be determined with good precision from a smaller amount of data)



The position of the distribution

Population mean

Choice of position parameter depend on the type of measurement

Mean most common

f’s 1:st moment

(center of gravity)
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The width of the distribution
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 = standard deviation

Population variance

f’s 2:nd moment

Choice of parameter depend on the type of measurement

Standard deviation and Full Width Half Maximum (FWHM) most common
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The Normal Distribution
Variable x,  real number

Parameters ,  standard deviation, mean

Probability distribution

N(,2) denotes a normal distributed parameter with mean  and standard deviation 

68%

95%

99.5%



Also called the Gaussian distribution
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A 100x100 image with Gaussian 
data will contain about 500 2 

points and 50 3 points. 
Finding a 5 point is not so 
spectacular 
The number of fake signals increase 
in large data sets



Central limit theorem
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If the independent events Xi have the mean  and the variance 2

then

has the mean N and the variance N2

→ has the mean  and the variance 2/N

→ has the mean 0 and the variance 1

The central limit theorem claims that                    is normally distributed

i.e. it has the limit distribution N(0,1) 

This is why the normal distribution is so important

Quadrupling the number of measurements -> halves the statistical error
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The Binomial Distribution
Repeating independent elementary binary events (succeed – fail) each with the probability p

E.g.

Tossing coins elementary event – coin toss

Drawing tickets with replacement elementary event – draw

Radioactive decay elementary event – decay of a nucleus

Monte Carlo simulations elementary event – one case

Parameters

N>0  number of trails

Variable

Probability distribution
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Variance
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The uniform distribution

E.g.

Pseudo random number in a computer, truncation errors and digitization

errors are uniformly distributed 

Variable x, real number

Parameters a, b, a < b

Probability distribution function

Mean

Variance
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The Poisson distribution
The probability for a certain number of events during a time period if the probability per time unit for such a event 

is constant (l) and independent of what happened before.

One can say that the process has no memory

Radioactive decays (approx. Poisson)

Parameter 0< l , events/time unit

Variabel r≥0, the number of events

Probability distribution

Mean

Variance

Binomial distribution --> Poisson distribution with                        if                        and                      while

p(r) =
lre−l

r!
E(r) = l
V(r) = l

l = Np →N 0→p Np=const
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Poisson distribution with n>50 looks like a normal distribution

l=50
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Histograms with many events (approx Poisson)

Assuming Poisson instead of
Binomial when p is large leads
to over estimation of variance.
In semiconductor detectors this
is compensated by using the 
Fano factor



Stochastic variables

a variable x which can assume different values with the probability density function fx

x is therefore completely defined by f

You can multiply sv:s with coefficients, add or subtract them

y=2x has a probability density as well and is thus also a stochastic variable. Here the distribution just expanded 
with a factor 2.



Linear transforms of stochastic variables

y=2x
fy

fx

Probabilities for the selected event:

fy(y) dy = fx(x) dx

but since: dy = y´dx = 2dx

fy(y) = fx(x) /2 = fx(y/2) /2

The areas correspond

to the same event

y

The stochastic variable y=2x has the probability density fx(y/2)/2



Non-linear transform of stochastic variables

y=g(x)

fg(x)

fx

Probabilities for the selected event:

fg(x)(g(x)) dg(x) = fx(x) dx

but since: dg(x) = g’(x) dx

fg(x)(g(x)) = fx(x) /|g’(x)| provided g(x) is one-one

If g(x) is non-linear the pdf will be deformed

But if g(x) is approximatively linear in the main range of x

then g(x) will, apart from a coefficient, have the similar pdf as x

The stochastic variable y=g(x) has the probability density fx(x) /|g’(x)| 

The areas correspond

to the same event

g(x)



Monte Carlo simulations

• are consists of many choices of sv:s with different distribution functions

• A uniformly distributed sv is easily generated in a computer. 

• You start with a seed number to initialize the random number genertor which then generate a sequence of 
numbers, one for each function call,  a sequence of approximately uniformely distributed values.

• This is called pseudo random variable. If you start with the same seed you get the same sequence (very 
useful if you are developing a program).

• The pseudo random variable can then be transformed into any desired distribution



Statistics

The calculation {X} --> TN implies a data reduction

The task is to perform data reduction without loosing information

TN = f(X1,X2, ,XN) is a statistic ;where X is a measurement

A statistic is a function of stochastic variables



Estimators

Let us use the statistics TN to estimate the physical parameter q

TN is the called an estimator

If                               then TN is consistent

If                         for all N then T     isN unbiased

unbiased

biased

inconsistentconsistent

lim
N→ 

TN = q

E(TN ) =q

An infinitely large sample should give the true value

The mean of a large number of small sample estimators should give the true value



If T   uses the information well it isN effective

If TN is not sensitive to small variations in the distribution then TN is robust

A lack of consistency correspond to the presence of systematical errors

Estimators



Samples
If you have a sample with N measured values xi then

The sample mean is

It is a consistent estimator of the population mean 

One also easily show that it is unbiased,

since the mean of many small samples is the same as the mean

of one large sample

X
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Why N-1?

is more central in the sample than  thusx
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are both consistent estimators of 2 but

only the right one is unbiased

N-1 compensates for the under estimation



Bayes’ theorem*

P(AB) = P(A)P(B|A) = P(A|B)P(B)   Bayes’ theorem

A B

AB

P(B|A) = P(AB)/P(A) →

P(A)    Prior distribution
P(AB)  Posterior distribution

Bayesian methods

P(A|B) is the conditional probability that A will occur if B has occured

P(A) is the probability that A will occur



Tests of hypotheses
H0 the null-hypothesis the hypothesis you want to test - e.g. there is a pulse

H1 an alternative hypothesis – there was no pulse, just noise

Error of the first kind (E1):      Erroneous rejection of the null-hypothesis – loosing the pulse, inefficiency

Error of the second kind (E2): Erroneous rejection of the alternate hypothesis – reading noise as a pulse

Choose a limit so that P(E2) becomes sufficiently small – below a significance level 5% is common. 

If P(E2) becomes too large improve the data (more measurements)

Difficult to optimize choice of two conflicting parameters

Find a cost function which includes the probabilities and the cost caused by the different errors

Choose a limit that minimizes the cost function

P(E2)P(E1)

P(X|H1)

Accept H0Reject H0

P(X|H0)



We need many measurements to claim a discovery
To determine if N observed events include a new type of events that 

would constitute a discovery we must determine if the data could be 

produced by combinations of well-understood events. 

The probability for such events is the background B and its standard 

deviation (B)=sqrt(B) (Poisson statistics)

For N to contain a discovery, N must be significantly larger than B

For example if N is 80 and B is 64 then (B) is 8

N is 2 above B i.e. 2% probability that N is just random noise

If we measure 4 times as long N´ will be at 320 and B´ 256 making (B´) 

16, i.e. the difference is then about 4 corresponding to 0.004% that the 

measurement is just random noise. This is a much smaller probability but it 

is not enough to claim a discovery.

5 (0.00002% it is random noise) is often required for discovery.

However, this argument assumes no systematic errors. Increasing the 

number of events means that the relative influence of the systematic errors 

increase.

68.3

95.5

99.7

− +

Normal distribution
Almost the same
as Poisson if N>50

0.004%

B’ N’

2%

B N



Fitting parametrized expressions to data sequences*
To fit a theoretical expression f(k,q) that depends on the parameter q to a set of data y(k) where k=1 to n, you 

need a figure of merit to optimize.

The f.o.m. expresses how close f and y are.

Since y contains noise the f.o.m. is a statistic with a pdf even if f is correct.

One such methods is the Least Square Method (LSM) where the f.o.m. is the sum of the square normalized 

distance between the f and y points. Normalize means that you divide the square distance with the variance of 

the distance.

The sum of the squares are c2-distributed

The degrees of freedom is the number of data points minus the the number of parameters fitted.

Another method is to calculate the probability (Likelyhood) for getting the measurement results y if f is the 

correct description. The parameter values are choosen that maximizes the Likelyhood (ML-method)



If xi are N different N(0,1) normal distributed variables then the sum 

is c2-distributed with N degrees of freedom

Variable q, positive real number

Parameter N degrees of freedom

Probability distribution

Mean

Variance
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The -function is defined as:

The c2-distribution*



Thank you for your attention


