
AI in medical imaging
Status, opportunities, pitfalls and challenges

Dr Mitra Safavi-Naeini
Principal Physicist - ANSTO 



Camperdown | NSW

Cyclotron

ANSTO  |  We are the national nuclear science and technology agency

Lucas Heights | NSW

Main campus

Clayton | VIC

Australian Synchrotron

Operating safely for 
over 60 years

Home of Australia’s 
landmark research 
infrastructure



Artificial intelligence: what is intelligence? 



Big Data
▪ Three Vs:
▪ Volume: Exponential increase 
▪ Velocity: Rate at which it is produced
▪ Variety: Different formats with no or 
little structure

▪ There is an additional one that matches medical data:

▪ Veracity: Data might be incomplete, noisy, not meaningful, uncertain, 
ambiguous and inconsistent. 





Is it AI?

https://www.technologyreview.com/2018/11/10/139137/is-this-ai-we-drew-you-a-flowchart-to-work-it-out/

https://www.technologyreview.com/2018/11/10/139137/is-this-ai-we-drew-you-a-flowchart-to-work-it-out/


▪ All useful programs “learn” something
▪ Learning is improving at a task (set of skills) with 

experience
▪ Experience = Data

▪ The more data the better

▪ However, more data requires more computational power and 
storage

“Field of study that gives computers the ability to learn without being 
explicitly programmed.” ~Arthur Samuel (1959)

What is machine learning? 



What is machine learning? 
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Example: Newton-Raphson method

x1 = x0 - f(x0)/f’(x0) 

Data





Source: https://github.com/Gautam-J/Machine-Learning

https://github.com/Gautam-J/Machine-Learning
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▪Observe a set of examples: 
training data
▪ Infer something about the underlying model: 
inference engine
▪Use inference to make predictions about unseen data: 
test data

Training dataset → Inference Engine → Test dataset

Basic paradigm 



Supervised vs unsupervised learning

Uribe et al., 2019 “Machine Learning in Nuclear Medicine: Part 1—Introduction” JNM, 60 (4) 451-458; 
DOI: 10.2967/jnumed.118.223495



Supervised, semi-supervised, unsupervised learning

E. Montagnon et al., 2020 “Deep learning workflow in radiology: a primer”. Insights Imaging 11, 22 (2020). 
https://doi.org/10.1186/s13244-019-0832-5

https://doi.org/10.1186/s13244-019-0832-5


Example: segmentation and quantification

E. Montagnon et al., 2020 “Deep learning workflow in radiology: a primer”. Insights Imaging 11, 22 (2020). 
https://doi.org/10.1186/s13244-019-0832-5

https://doi.org/10.1186/s13244-019-0832-5


▪ New Image reconstruction methods
▪ Quality assessment algorithms 
▪ Triaging of cases to find similar 

patient data and diagnostic 
classification

▪ Lesion and disease detection and 
classification

▪ Segmentation, identification and 
feature extraction (radiomics) and 
quantification  

Status: what works?



▪ Diversification of learning for 
prognosis and predictive information.  

▪ Building trust and reliability in the 
models

▪ Labelling the unlabelled image-data 
using unsupervised learning.  

▪ Fairness and bias mitigation and 
understanding the limits of our 
algorithms. 

      Garbage in - garbage out!

What are the challenges? What is on the horizon?



▪Declarative knowledge (memorising)
▪ Accumulation of individual facts

▪ Limitations: Storage capacity and 
observation time

▪ Imperative knowledge (generalisation)
▪ Deduce new facts from old facts

▪ Limitation: accuracy of deduction process 
(assuming that past can predict the 
future)

Learning



Demonstration: Brain tumour 
segmentation

● This is an example from Matlab, using the Deep Learning 
toolbox.

● The first and most important part of any ML solution is 
training data

● This example uses segmented MRI brain images from the 
BraTS data set from the Medical Segmentation decathlon 
(http://medicaldecathlon.com/) 

http://medicaldecathlon.com/


Training data

● The data set includes 750 MRI images of brains with 
tumours, 484 of which have been manually labelled as 
tumour or background. These are what we will use.

● Image dimensions: 240 (h) x 240 (w) x 155 (d) x 4 
(scan modality)

● Labelled images are divided into three subsets:
○ Training (400) - to train the neural network
○ Validation (29) - to monitor over/underfitting during training
○ Testing (55) - to evaluate the performance of the trained 

network



MRI image sample

https://docs.google.com/file/d/1PzHyptZZnMkmlSK3yZ1WXBfEKnYulOBC/preview


Preprocessing and preparation of 
training data

● Volume and label images are converted from NIFTI to 
Matlab binary format

● To reduce the memory and processing burden, the 
images are cropped to remove non-brain regions

● 16 132x132x132 subsets (‘patches’) of each image are 
randomly selected as training samples

● Patches are normalised - so we don’t have to do this 
later during training (faster to just do it once)



Constructing the network
● We will use U-Net, an encoder/decoder convolutional 

neural network (CNN) which is widely used for image 
segmentation

● A default 3D U-Net network is constructed; input 
dimension is the patch size (132x132x132x4) and output 
dimension is 44x44x44x2 (due to the use of ‘valid’ style 
padding on each patch - no zero-padding is used)

● The input and output layers are modified from defaults
○ Input layer does not need to do normalisation (already done 

during preprocessing)
○ Output layer is changed to a dicePixelClassificationLayer for 

better segmentation of small tumour regions



Training hyperparameters

● The main training hyperparameters of interest (and 
suggested values):

○ Use the adam optimiser (popular choice for segmentation)
○ Specify which data you are using for validation, and how 

often to validate (e.g. every 400 iterations)
○ Maximum number of training epochs (passes through all 

training data - e.g. 50)
○ Initial learning rate (0.0005), mode of decrease (‘piecewise’) 

and rate of decrease (x0.95 every 5 epochs)
○ MiniBatchSize - make larger if you have more GPU memory 

(but you might be better off with larger patch size)



Training

● This is the easy part - one line of code!
[net, info] = trainNetwork (dsTrain, lgraph, options);

● lgraph is the network, dsTrain is our training datastore 
and options are our training options

● Important: save the resulting network net for future use  
- it will be about 60 MB

● Takes roughly 30 hours to train on a powerful GPU/CPU 
system - much slower without a GPU



Applying the trained network

● Since the input size of the network is smaller than the 
dimension of the training data, we step through the input 
image size with a stride equal to the output patch size, 
and extract patches equal to the input patch size.

● Each patch is segmented:
patchSeg = semanticseg (patch, net);

● The resulting segmented patches are then stitched back 
together and the final image is cropped to the original 
size



Ground truth (L) and segmented (R)

https://docs.google.com/file/d/1F4ysuPSDO8O9_rVzaXX4uZ9SqbQAWJxi/preview


Performance

● The network performs very well. Results for testing data 
show that:

○ ~98% of the network-classified voxels agree with the ground 
truth (true positive + true negative)

○ Jaccard score is > 95% for all evaluated images
○ Dice similarity score > 99.9% for background and > 95% for 

tumour
● The approach can be generalised to other image 

segmentation problems



Code

Original example:
https://au.mathworks.com/help/vision/ug/segment-3d-brain-
tumor-using-deep-learning.html

Commented code:

https://au.mathworks.com/help/vision/ug/segment-3d-brain-tumor-using-deep-learning.html
https://au.mathworks.com/help/vision/ug/segment-3d-brain-tumor-using-deep-learning.html
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