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A little about me

My path in research At IEEE

 2003-2015 Small animal scanner * Involved in CANPS
» 2010-2017 PhD on 3D Digital SiPM * |EEE NPSS Real Time Conference

.+ 2017-2019 Postdoc at MGH/HMS on * 'EEE TNS Assistant Editor
PET brain scanner - |EEE NPSS RISC elected member

e 201 9_Today Professor at Sherbrooke * Contribute to the IEEE NSS/MIC Conference
* Electrical and computer engineering e |EEE NPSS School!

* Next week
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What is Positron Emission
Tomography?




Families of medical imaging

Structural Imaging Molecular Imaging (see metabolism)
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Positron Emission Tomography

e positron

e electron
 heutrino

Y quantum/photon
(511 keV)
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Positron Emission Tomography

m » Molecular Imaging Modality

« Tracer distribution (positron emitter)
* Hot spot on the left side

 Positron Annihilation
* Collinear 511 keV particles

* Line of response
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Examples of PET images

IBEDG (Glucose) tracer Bone Tracer ([!*F]NaF)
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What is PET used for

Clinical applications Research

 Oncology « Evaluate new treatments

» Diagnose cancer « Better understand the human body

* Follow treatment evolution .
* Alzheimer’s disease

« Cardiology
 Assess damage from a heart attack
« Evaluate the blood flow
« Assist doctors in choosing proper intervention

 Neurology
 Epilepsy
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But how does a PET scanner
work?




Goal of PET Scanner

 Getimages to help doctors and biologists do their work

» To build an image, the scanner needs to collect as many
lines of response (LOR) as possible

* How do we find them?
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Unique properties of PET radiation

e T positron
e electron

v neutrino
180° £ 0.5°
7Y quantum/photon
v (511 keV)

« The gamma energy is known (511 keV)

 They always come in pairs

* Found at the same time

 On opposite sides of the scanner
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Unique properties of PET radiation

* \We need to find events with the correct
* Energy

* Timing
* Position (in the ring)
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Unique properties of PET radiation

Scintillator hotosensor Elec}mnics

A
’\-+>;':ﬂ=<\; ) rtj

Scintillation light

Gamma
particle
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Unique properties of PET radiation

 Energy
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How to find 511 keV events?

 Energy = Number of Scint. Photons

« Equivalent to electrical charge measurement

 How to determine energy?

« Collect many events with known source

Build histogram (+1 for each event at amplitude number)

Find peak
Scale axis
Compare new events to scale

1000 ¢

Number of Counts

800

600

400 |

200

Scintillator Photosensor Electronics

N

=i | pKce

)/

Gamma e
particle Scintillation light ®Ge source
S50k events
LYSO 511 keV
/ Photopeak
50 100 150

Channel Number
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How good is an energy measurement?

 Energy resolution depends on
 Crystal
 Photosensor
* Electronics

« Width of peak divided by position
on histogram

.FWHM

E

 For SiPM-LYSO,
typically 10-12% FWHM

Number of Counts

1000

68Ge source
90k events

800
600 LYSO 511 keV
/ Photopeak
400
200
0
0 50 100 150

Channel Number

*FWHM - Full Width at Half Maximum
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What's that bump before the peak?

e Events with less than 511 keV?

1000
« Compton Scatter %Ge source
90k events
. 800
« Partial energy transfer
[7}]
E 600 LYSO 511 keV
° Photopeak
O /
[T
© 400
Q
0
€
3 200
0
0 50 100 150

Channel Number
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Types of interactions

Photoelectric Compton Scatter Compton Scatter
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Unique properties of PET radiation

* Timing
* Position (in the ring)
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Time and Position Electronic Collimation

.

ﬁ

Photodetector

Front-End

Photodetector

Front-End

* Pulse is generated when gamma is found
« But save data only for pair
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Time and Position Electronic Collimation

* Pulsed systems (before 2004)

Photodetector

Front-End

Photodetector

Front-End

 Waveform sampling systems (2003- )

Photodetector

Front-End

Photodetector

Front-End

AN
AN

}

ADC

DSP

ADC

DSP

Timestamp
Timestamp

* Triggered systems (many variations)

Photodetector

Front-End

Photodetector

Front-End

TDC

TDC

Timestamp
Timestamp

event 1: Time, Position, Energy
event 2: Time, Position, Energy
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Building the timing histogram

Number of detections

Coincidence Pair  Rejected Single
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Actual Timing Spectrum
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Types of coincidence

True Scatter Scatter Random Random

b
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The coincidence timing spectrum

Coincidence Count

Prompt Coincidences

Coincidence time window

— (Count rate)?

True
and Scatter
Coincidences

el S

Detection Time Difference
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Coincidences vs Relative Activity
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Solution 1: Estimate Random Coincidences

A
: .
A Prompts Selection A Delayed Randoms Selection
JA — N
——— — >

M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal 30



Solution 2: better timing measurement
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Why is PET so interesting?

SPECT PET

Single Photon Emission Computed Tomography < Positron Emission Tomography

Broad selection of short-lived isotopes Broad selection of short-lived isotopes
« 9MTc is about 6-hour half-life « 18F is about 2-hour half-life

Radiation has known energy value Radiation has known energy value
* Use energy reading to reject events * Use energy reading to reject events

Further rejection requires a physical collimator Further event selection is electronic
* Reduces sensitivity  Use time and position instead

Small-sized generators provide the material Cyclotron ($$$9$) typically provides isotopes
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Review

* Find lines of response (LOR) using
* Energy

* Timing
 Position

 Use image reconstruction program

 (oal: Support doctors and scientists in
medicine and biology
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How can we improve PET
scanners?




Improve image quality - spatial resolution
Better images with finer pixels
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Improve image quality - spatial resolution

* Position (in the ring)
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Spatial resolution — fundamental limitations
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Spatial resolution — solutions to improve

Make crystals smaller Eliminate the decoding factor
« Pixels will be finer * One electronic channel per crystal
« Until the positron range becomes dominant * Very high count rate becomes possible

+ Increases visible inter-crystal scatter * Distinguish inter-crystal scatter

 High density electronics
* Lightis harder to extract ) y

« Affects timing and energy resolution * Higher cost

» More difficult to manufacture

« Smaller crystals break more easily
« Increases scanner cost Solutions highly used in Sherbrooke
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High resolution PET in Sherbrooke

UbS
* From 1985 onto today; Small animal imaging

—

Shrbrooke PET

o LabPET-II mouse scanner
LabPET mouse scanner .
M-A Tétrault, 2022 |EEE ol of Application,of Radiation Instrumentation Dakar, Senegal
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2 (2016 - today)




Scaling up for the human brain




Parallax error

* Long crystals create widening of
response tube on scanner periphery

 Long crystals « see » more events

 To mitigate,
« Stack two or more crytals and discriminate

« Use light sharing techniques to find position LOR b, }
. Dual sided readot Ut SO S

« Light sharing between neighbouring crystals

From J E Ortuno, PMB, 2010
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Alternative — Monolithic crystals
« Many photosensors; one crystal

« Signal processing to find point of interaction

« Small animal scanner: Molecubes
* https://www.molecubes.com/

From Borghi et al, PMB 61,13, 2016

2

7\ 2
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Improve image quality - contrast

Goal : sharpen the difference between individual pixels
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Improve image quality - sensitivity

« We need to find (all) events @

P
Ve
Ve
/
:; /

M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal 44



Improve image quality - sensitivity
* Eliminate or minimize detector dead time or dead area

* Maximize the effective event count rate
* 1:1 coupling vs [Monolithic / Shared arrays]

* Increase solid angle coverage

70 cm 70 cm 140 cm 200 cm
Surti et al, TRPMS, 2020
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Time of Flight — Concept and expected benefits

N

T1
T2-T1=AT
o D B 2D Object size
~ Ax  cAt  ToF precision
40 cm object SNRrop (40 cm 91 G =44
At = 600 ps SNRrgp 9cm o+ T OT%
4 cm object SNRrop _ [ 4cm _ G =44
At = 60 ps SNRrgp  09em T 7T

Budinger TF., J Nucl Med 24(1):73-78, 1983.
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More to come next week!
« EasyPET exercice next week!

*Next week setup is slightly different

V. Arosio et al., 2016 IEEE NSS/MIC Conference Record,
DOI:
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https://drive.google.com/open?id=1HmCiElNYCkfcyEqN6eoY0EcSF7xsR0IC

ToF — Challenges in the whole acquisition chain

Photosensor

Scintillator

\

.
K

Electronics

A Y

F%

Gamma
particle

/

Scintillation light

Very hot topic in the field!

https://the10ps-challenge.org/

Where to get involved?

Scintillators

Photosensors

Front end electronics

Data acquisition

Image reconstruction

Artificial intelligence (data and images)

Small animal imaging (biology)
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Thank you for your attention!

Université de
Sherbrooke



