Data acquisition and radiation detection essentials for Positron Emission Tomography

Marc-André Tétrault IEEE NPSS School of Application of Radiation Instrumentation Dakar -Senegal November 15th 2022

Where do I come from?

Université de Sherbrooke – Main Campus

Uds

3IT : Institut Interdisciplinaire d'Innovation Technologique

M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal

UdS

4

My path in research

- 2003-2015 Small animal scanner
- 2010-2017 PhD on 3D Digital SiPM
- 2017-2019 Postdoc at MGH/HMS on PET brain scanner
- 2019-Today Professor at Sherbrooke
 - Electrical and computer engineering

At IEEE

- Involved in CANPS
 - IEEE NPSS Real Time Conference
- IEEE TNS Assistant Editor
- IEEE NPSS RISC elected member
 - Contribute to the IEEE NSS/MIC Conference
- IEEE NPSS School!
 - Next week

What is Positron Emission Tomography?

Structural Imaging

Molecular Imaging (see metabolism)

MRI

M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal

PET

Positron Emission Tomography

- Molecular Imaging Modality
 - Tracer distribution (positron emitter)
 - Hot spot on the left side
 - Positron Annihilation
 - Collinear 511 keV particles
 - Line of response

¹⁸FDG (Glucose) tracer

Bone Tracer ([¹⁸F]NaF)

Clinical applications

- Oncology
 - Diagnose cancer
 - Follow treatment evolution
- Cardiology
 - Assess damage from a heart attack
 - Evaluate the blood flow
 - Assist doctors in choosing proper intervention
- Neurology
 - Epilepsy

Research

- Evaluate new treatments
- Better understand the human body
 - Alzheimer's disease

But how does a PET scanner work?

• Get images to help doctors and biologists do their work

- To build an image, the scanner needs to collect as many lines of response (LOR) as possible
 - How do we find them?

- The gamma energy is known (511 keV)
- They <u>always</u> come in pairs
 - Found at the same time
 - On opposite sides of the scanner

UDS

- We need to find events with the correct
 - Energy
 - Timing
 - Position (in the ring)

- We need to find events with the correct
 - Energy
 - Timing
 - Position (in the ring)

- Photosensor Electronics Scintillator Energy \equiv Number of Scint. Photons • Equivalent to electrical charge measurement • w • How to determine energy? 1000 Gamma Scintillation light ⁶⁸Ge source particle Collect many events with known source 50k events 800 Build histogram (+1 for each event at amplitude number) ٠ Number of Counts LYSO 511 keV 600 Find peak Photopeak • 400 Scale axis • Compare new events to scale • 200 0 50 100 150 0
 - Channel Number

- Energy resolution depends on
 - Crystal
 - Photosensor
 - Electronics

• Width of peak divided by position on histogram

FWHM

E

• For SiPM-LYSO, typically 10-12% FWHM

- Events with less than 511 keV?
- Compton Scatter
 - Partial energy transfer

Photoelectric Compton Scatter Compton Scatter

Uds

- We need to find events with the correct
 - Energy
 - Timing
 - Position (in the ring)

- Pulse is generated when gamma is found
 - But save data only for pair

UDS

• Pulsed systems (before 2004)

• Waveform sampling systems (2003-)

event 1: Time, Position, Energy event 2: Time, Position, Energy

• • •

• Triggered systems (many variations)

UDS

SPECT

. . .

- Single Photon Emission Computed Tomography
- Broad selection of short-lived isotopes
 - ^{99m}Tc is about 6-hour half-life
- Radiation has known energy value
 - Use energy reading to reject events
- Further rejection requires a physical collimator
 - Reduces sensitivity
- Small-sized generators provide the material

PET

- Positron Emission Tomography
- Broad selection of short-lived isotopes
 - 18F is about 2-hour half-life
- Radiation has known energy value
 - Use energy reading to reject events
- Further event selection is electronic
 - Use time and position instead
- Cyclotron (\$\$\$) typically provides isotopes

•

- Find lines of response (LOR) using
 - Energy
 - Timing
 - Position
- Use image reconstruction program

 Goal: Support doctors and scientists in medicine and biology

How can we improve PET scanners?

Improve image quality - spatial resolution

Better images with finer pixels

- We need to find events with the correct
 - Energy
 - Timing
 - Position (in the ring)

Spatial resolution – fundamental limitations

Make crystals smaller

- Pixels will be finer
 - Until the positron range becomes dominant
- Increases visible inter-crystal scatter
- Light is harder to extract
 - Affects timing and energy resolution
- More difficult to manufacture
 - Smaller crystals break more easily
 - Increases scanner cost

Eliminate the decoding factor

- One electronic channel per crystal
 - Very high count rate becomes possible
- Distinguish inter-crystal scatter
- High density electronics
- Higher cost

Solutions highly used in Sherbrooke

High resolution PET in Sherbrooke

• From 1985 onto today; Small animal imaging

Sherbrooke PET (1995-2009)

LabPET mouse scanner M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal (2007 - today)

39

UDS

Scaling up for the human brain

FILL BUILDEN

Parallax error

- Long crystals create widening of response tube on scanner periphery
 - Long crystals « see » more events
- To mitigate,
 - Stack two or more crytals and discriminate
 - Use light sharing techniques to find position
 - Dual sided readout
 - Light sharing between neighbouring crystals

From J E Ortuno, PMB, 2010

Alternative – Monolithic crystals

Uds

- Many photosensors; one crystal
- Signal processing to find point of interaction

- Small animal scanner: Molecubes
 - https://www.molecubes.com/

From Borghi et al, PMB 61;13, 2016

$$R_{sys} = a \sqrt{\left(\frac{d}{2}\right)^2 + b^2 + (0.0022D)^2 + r^2} ??$$

Improve image quality - contrast

Goal : sharpen the difference between individual pixels

M-A Tétrault, 2022 IEEE NPSS School of Application of Radiation Instrumentation Dakar, Senegal

Uds

- We need to find (all) events with the correct
 - Energy
 - Timing
 - Position (in the ring)

Improve image quality - sensitivity

- Eliminate or minimize detector dead time or dead area
 - Maximize the effective event count rate
 - 1:1 coupling vs [Monolithic / Shared arrays]

• Increase solid angle coverage

UDS

<i>G</i> =	<u>D</u>	$2D \sim$	Object size
	Δx	$\frac{1}{c\Delta t} \sim$	ToF precision

40 cm object

$$\Delta t = 600 \text{ ps}$$

$$\frac{SNR_{TOF}}{SNR_{TEP}} = \sqrt{\frac{40 \text{ cm}}{9 \text{ cm}}} = 2.1 \Rightarrow G = 4.4$$

4 cm object	SNR _{ToF}	4 cm		C A A
⊿t = 60 ps	$\overline{SNR_{TEP}} = $	$\frac{1}{0.9 \text{ cm}} = 2.1$	⇒	G = 4.4

Budinger TF., J Nucl Med 24(1):73-78, 1983.

• EasyPET exercice next week!

*Next week setup is slightly different

V. Arosio et al., 2016 IEEE NSS/MIC Conference Record, DOI: <u>10.1109/NSSMIC.2016.8069360</u>

Very hot topic in the field!

https://the10ps-challenge.org/

Where to get involved?

- Scintillators
- Photosensors
- Front end electronics
- Data acquisition
- Image reconstruction
- Artificial intelligence (data and images)
- Small animal imaging (biology)

Thank you for your attention!

