IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

Streaming DAQ software prototype at J-PARC
hadron experimental facility

Tmonori Takahashi, Ryotaro Honda, Youichi Igarashi, Hiroshi Sendai

Abstract—In recent years, particle physics and nuclear physics
experiments require faster data collection systems and advanced
trigger systems as the beam intensity increases. The current
DAQ system at the J-PARC hadron experimental facility (HEF)
uses a fixed- and low-latency trigger with dedicated hardware to
reduce data and event-building software that merges data into a
single endpoint. This conventional DAQ system is expected to be
inadequate for the requirement of future experiments and has
to be replaced with a new simplified but powerful one, called
streaming DAQ, which collects the whole detector signals and
filters them by software running on many computers. Therefore,
we have developed a prototype of streaming DAQ software for
the J-PARC HEF using FairMQ and Redis as middleware. The
key features are that it is simple and has a low learning cost to
develop and operate by a small number of people. The software
can be used not only in a fully streaming readout system but also
in the triggered DAQ and the combined DAQ of the hardware
and software trigger.

Index Terms—Control systems, Data acquisition systems.

I. INTRODUCTION

HE J-PARC Hadron Experimental Facility (HEF) was

constructed to conduct various particle and nuclear
physics experiments using secondary particles produced by the
intense proton beam and started operation in 2009. Recently,
experiments at the HEF require faster data collection and
advanced trigger systems as the beam intensity increases. The
current data acquisition (DAQ) system at the HEF [1] was
developed more than 10 years ago for small- to medium-scale
experiments. The DAQ system uses event selection with fixed-
and low-latency triggers generated by NIM logic modules
and an FPGA module to reduce the amount of data to be
recorded. The event data selected by the trigger are collected
on a single computer over a TPC/IP network as shown in
Fig. 1a. However, the current system has limitations for future
experiments with high event and data rates such as El16
[2] and ES5O0 [3] experiments. For example, it is challenging
for the limited number of people in the experimental group
responsible for DAQ to develop trigger circuits and logic in
hardware to achieve the complex selections required in future
experiments that use many detector signals (e.g., more than
thousands) for triggering. Furthermore, the configuration of
only one event builder process in the system causes data

Manuscript received August 22, 2022. This work was supported by JSPS
KAKENHI Grant Number JP20K04005.

T. N. Takahashi is with Nishina Center for Accelerator-basd Science,
RIKEN, Wako, Saitama 351-0198, Japan (e-mail: tomonori@riken.jp).

R. Honda, Y. Igarashi, and H. Sendai are with Institute of Particle and
Nuclear Studies, High Energy Accelerator Research Organization, Tsukuba,
Ibaraki 305-0801, Japan (e-mail: rhonda@post.kek.jp; yoichi.igarashi @kek.jp;
hiroshi.sendai @kek.jp).

Event Builder WA
N> Sink
Re (“read and drop” or
\\ “read and record”)

/

- ST

[\
-
- T

(a) Current tree-like DAQ system.

TFB
(Time Frame Builder) N\

W
0

[ree @ e S = o =
=8-S R Fier Do
[FEE g Seroler gt ST Tr Filter

N:M connection and round robin network

(b) Multiple endpoint DAQ.

Fig. 1: Schematic views of the DAQ topology used in the
current experiments (a) and required for future experiments

(b).

collection to slow to about 1 GB/sec. Therefore, to solve
these problems, it is necessary to design and develop DAQ
software that reads detector data in a self-triggered manner
and performs event selection by 100 to 1000 processes with
load balancing software (Fig. 1b). In addition, the software
must be simple and have low learning costs so that it can be
quickly developed and operated by a small number of people
when developing an application for each experiment.

II. THE PROTOTYPE ARCHITECTURE

The software prototype is developed in C++ language using
FairMQ [4], [5] and Redis [6] (Fig. 2). FairMQ is a toolkit
developed at GSI for large-scale data processing and is an
implementation of a parallel processing workflow with an
actor model. The core building block of FairMQ is called
FairMQDevice, which is the base class for implementing user
code. FairMQDevice has a finite state machine and provides
methods to implement the configurations of data paths and
a user task and task execution. Each process in the DAQ
system corresponds to one FairMQDevice and performs a
user-defined task. FairMQ also provides an abstract commu-
nication utility called FairMQChannel or FairMQSocket,
which wraps messaging libraries such as ZeroMQ [8]. Ze-
roMQ has many advantages in DAQ applications, for example,
broker-less, lightweight, and low latency. It supports advanced

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

DAQ

.
=
5

Redis

Boost

ZeroMQ

FairLogger

Fig. 2: DAQ software stack.

communication patterns such as publish/subscribe (Pub/Sub),
request-reply, push-pull pipeline, and exclusive pair compared
to direct use of the raw sockets. In addition, FairMQ imposes
no restrictions on the data format of messages, allowing for
freedom in how to use it.

The configuration, control, and monitoring of the Fair-
MQDevice are handled by a dynamic library called Plugin,
which is loaded at runtime. To operate multiple FairMQDe-
vices (e.g., ~100 k user processes), external libraries called
DDS (dynamic deployment system) [9], [10], and its extension
ODC (Online Device Control) [11] are available for FairMQ.
In this work, however, simpler, Redis-based Plugins have been
developed to implement web-based user interfaces. Redis is an
open-source in-memory type data structure server that is fast.
Redis can handle various data types: strings (i.e., simple key-
value data), lists, hash maps, and sets. Furthermore, Redis also
functions as a message queue broker and can be used for DAQ
command distribution. It also offers flexibility in extending the
user interface for each experimental group or application, as
it has libraries for many programming languages.

Fig. 3 shows the typical internal block diagram of each DAQ
process of the software prototype. Three types of Plugins have
been developed.

A. DAQ service Plugin

The DAQ service Plugin provides the user interface for
controlling DAQ states. It receives state transition and state
check commands, which are formatted in JSON structure and
distributed from a controller process to the DAQ process
through the Redis pub/sub channel. It returns the current state
to the controller process. The controller process can be any
redis client and can be operated from the command line with
redis-cli or via a web graphical user interface, as shown in
Fig. 4. A simple web-based controller with an HTTP server
and WebSocket using the boost library is available.

This Plugin also has the function of service discovery using
Redis. The Plugin registers a variable called presence with a
timer (time-to-live, TTL) in Redis. The timer is periodically
updated to prevent the timeout from occurring. When the timer
expires, Redis notifies the controller and other subscribers
that the expiration occurs via the Redis Pub/Sub channel, a
lightweight and low latency messaging protocol. In addition,

topology parameter

e

é redis —» G)

Grafana

daq command

(plugins

‘ DAQ service ‘ ‘parameter conﬁg‘ metrics ‘
I /procl/stat
‘ state machine ‘ ‘PFOgOptions‘ logger ‘ /proc/self/stat
|

v
‘ FairMQChannel ‘

FairMQDevice

user task ‘

Fig. 3: Overview of the Redis-based DAQ user interface for a
FairMQ processes.

Plugin

I
= recis
[

Fig. 4: Controller UI using Redis Pub/Sub channel.

HTML
JavaScript

L

http server

the Plugin registers process information to Redis: unique ID in
DAQ system, process group ID, IP address, and properties of
FairMQChannels. FairMQChannel has properties to be con-
figured, such as communication pattern (PUB-SUB, PUSH-
PULL, REQ-REP, PAIR), socket type (bind or connect), and
the socket address. These properties determine the commu-
nication topology between FairMQDevices. Fig. 5 shows
examples of topology diagrams commonly used in a DAQ
system. Fig. 5a shows the case where pipelines processing
independent data are configured in parallel. Fig. 5b shows
an example of load balancing with a static round robin. The
load balancing functionality built into ZeroMQ’s push-pull
pipeline does not allow strict control of data destinations.
Connecting sockets with individual addresses make it pos-
sible to control the destination. Fig. 5c¢ shows an example
of a topology configuration for aggregating data fragments
called time frames (or time slices) or event-building with
load balancing. The topology of the entire DAQ system is
composed of the combination of the partial diagrams described
above. However, if the sockets are configured one by one, the
effort required to set the whole topology will grow rapidly
as the number of sockets increases. Therefore, instead of
describing the connection between individual sockets, the
software prototype primarily describes the connection between
process groups called a service. Then, the connection settings
between individual sockets are generated from topology hints

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

[T1]

—
o

=
—_
[y

(b) 1-N (N-1).

Fig. 5: Examples of partial connection diagram in DAQ
system.

data-in
bind

data-out
connect

data-in
connect

data-out
bind
N:M

N:M M N:M N:M N:M
Service=TOF_TdcSampler §——gService=TOF_TimeFrameBuilder——§ Service=TOF_Filter _§p——————4 Service=TOF_FileSink |

data-in

data-out
connect

bind

(a) Service discovery input

W
XS

device=Filter
id=TOF_Filter-0

device=TimeFrameBLD
id=TOF_TFBLD-0

device=TdcSampler
id=TOF_TdcSampler-0

device=FileSink
id=TOF_FileSink-0

device=Filter
id=TOF_Filter-1

device=TimeFrameBLD
id=TOF_TFBLD-1

device=TdcSampler

device=FileSink
id=TOF_TdcSampler-1

id=TOF_FileSink-0

device=Filter
id=TOF_Filter-2

(b) Service discovery ouptut

Fig. 6: Example of service autodiscovery.

such as 1-1, 1-N, N-1, or N-N.

Fig. 6 shows an example of the service autodiscovery. It is
assumed that a workflow with four different process groups is
executed:

o Sampler, reading and buffering data from frontend elec-

tronics, then dividing the data into a certain time slice

o Time-frame builder, merging the data fragments in the

same time slice

« Filter, performing data reduction

« Sink, storing or monitoring the analysis results
Fig. 6a illustrates the input parameters for the topology setting.
They are six settings of service input/output endpoints (one
for sampler output, two for time frame builder input and
output, two for filter input and output, and two for sink input)
and three settings of connections between services (sampler
and time frame builder, time frame builder and filter, and
filter and sink). It corresponds to nine lines of the redis-cli
command. When processes of each service start, they find the
connection partners based on the information registered in the
service registry. Fig. 6b shows an example of the results of
automatic service detection. The user does not need to change
configuration parameters even if the number of processes
increases.

B. Parameter Config Plugin

The parameter config Plugin provides an interface to set
program options via Redis. Data of strings, lists, hash maps,
or sets registered in Redis are passed to the application. The
plugin checks Redis at each state transition and updates the
application parameters.

C. Metrics Plugin

The metrics Plugin checks the DAQ state, collects in-
put/output message transfer volume, message transfer rate,

and process statistics such as CPU load and memory usage,
and sends them to Redis. These measurements are taken at
the rate-logging cycle of the FairMQDevice (e.g., 1-second
intervals) and passed to the data monitoring tool Grafana [12]
via Redis. Grafana [12] displays the state of the DAQ process
and visualizes time series data using the time series extension
of Redis.

III. PERFORMANCE TEST

Two rack-mount servers were used for deployments of the
prototype software. Each server had 24 cores of Intel Xeon
Gold 6126 (2.6 GHz CPU), 64 GB memory, a network card
with 10-gigabit interface, and Scientific Linux 7 OS. The two
servers were connected across a 10 GbE switch. In this test,
three tasks (sampler, worker, and sink) were connected in a
1-N-1 topology and two different process deployments

o On the PC. All processes including Redis run on one host
(Fig. 7a).

e Via network. The workers run on a different host from
the others (Fig. 7b).

and two types of workloads

o Without load. Workers do nothing with the received data.
o With load. Workers shuffle the received payload for 1
msec as the dummy load.

were evaluated.
In the measurements, the size of event fragment data gen-
erated by each sampler was fixed at 50 KB.

IV. TEST RESULTS

The measured throughput is shown in Fig. 8. The lines with
cross and asterisk markers are measured without workload,
while the formers correspond to cases where the data transfer
is closed to the same host. It was found that the network
card’s upper limit of 10 GbE was reached when there was
no workload, and performance of 10 Gbps or higher was also
obtained when the same host was used.

The lines marked with squares represent measurements with
the dummy workload. The results scaled linearly with the
number of CPUs both for the same host and for different hosts.

Also, we confirmed that the Redis-based controller was able
to manage at least 700 processes.

V. APPLICATIONS

At least two experiments at J-PARC HEF adopts the soft-
ware prototype and are developing their applications.

A. J-PARC EI6

J-PARC EI16 experiment investigates the origin of the
hadron mass through the systematic measurement of the vector
meson mass [2]. E16 is upgrading the readout system of the
silicon strip detectors from a triggered DAQ using APV25to a
streaming DAQ using SMX2 [14]. E16 will use the prototype
software to combine the existing triggered DAQ [13] and a
streaming DAQ for SMX2 and start a first physics run in 2023.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

redis

Worker-000

TCP/IP

PUSH/PULL Worker-001

| Worker-002 I
Worker-003

Sampler

Dummy data
generation

TCP/IP
PUSH/PULL
Worker-n

(a) On the PC

PC2

: = 10GbE
redis

= TCP/IP
Sampler

= PUSH/PULL

Worker-000

Worker-001

(b) Via network

LA R NN RNRNENENENNRSESRSERSESH.S:ES:.H}: ™

Fig. 7: Process deployments used in the throughput evaluation.

45 T T T T T T

T T
on the PC ——
on the PC 2nd —>¢—
via Network —#—
wj/load on the PC —F— |
w/load via Network —/ i

Frequency (kHz)

10k : B

ol I I ! I I I I | I
10 15 20 25 30 35 40 45
Number of Workers

50

Fig. 8: Measured performance of the prototype software with
1-N-1 topology.

B. J-PARC E50

J-PARC ES50 experiment intends to study a diquark cor-
relation through the charmed baryon spectroscopy [3]. ESO
has to read approximately 25,000 channels of TDC under the
high-intensity of 30 MHz 7~ beam with the reaction rate of
1.5 MHz. Momentum reconstruction and particle identification
with most readout channels are required in the online analysis
to reduce the raw data of 10-20 GB/spill by 100. ES0 employs
a fully streaming DAQ based on the prototype software to
avoid the hardware trigger’s development cost and utilize the
flexibility of the software filtering. ESO has so far developed
circuits for streaming readout and demonstrated small-scale
DAQ [15]. The development of an efficient filtering algorithm
is underway.

VI. SUMMARY

The software prototype of streaming DAQ software has been
developed for high event and data rate experiments at J-PARC
HEF. The software is written in C++ and employs FairMQ
as the task executor of the DAQ workflow and Redis as the
control, monitor and configuration interface. The topology of
the DAQ system with multiple endpoints is configurable via
the service autodiscovery using Redis. Test results show that
the prototype has scalability up to the network bandwidth of
at least 10 GbE. Also, the controller can manage at least 700
processes.

The performance evaluation with many nodes and realistic
loads is in progress. In addition, we are developing applica-
tions for J-PARC E16 and E50 experiments. The prototype
software will be used in the physics run of E16 or the
commissioning run of E50 from 2023.

REFERENCES

[1] Y. Igarashi, et al., “An Integrated Data Acquisition System for J-PARC
Hadron Experiments,” IEEE Trans. Nucl. Sci., vol.57, no.2, pp. 618-624,
2010. [Online] Available: https://doi.org/10.1109/TNS.2009.2037959

Accessed on: August 22, 2022.

[2] S. Yokkaichi, et al, “Electron pair spectrometer at the
J-PARC 50-GeV PS to explore the chiral symmetry in
QCD,” J-PARC EI6 proposal, 2006. [Online] Available:

http://j-parc.jp/researcher/Hadron/en/pac_0606/pdf/p16-Yokkaichi_2.pdf
Accessed on: August 22, 2022.

H. Noumi, et al., “Charmed Baryon Spectroscopy via the
(7, D*™) reaction,” J-PARC E50 proposal, 2013. [Online] Available:
http://j-parc.jp/researcher/Hadron/en/pac_1301/pdf/P50_2012-19.pdf
Accessed on: August 22, 2022.

M. Al-Turany, et al., “Extending the FairRoot
to allow for simulation and reconstruction of free streaming
data,” J. Phys.: Conf. Ser, vol.513, p. 022001, 2014.
https://doi.org/10.1088/1742-6596/513/2/022001 Accessed on: August
22, 2022.

FairMQ, https://github.com/FairRootGroup/FairMQ Accessed on: Au-
gust 22, 2022.

Redis, https://redis.io Accessed on: August 22, 2022.

C. Hewitt, P. Bishop, R. Steiger, ”A Universal Modular ACTOR For-
malism for Artificial Intelligence, in Proceedings of the 3rd International
Joint Conference on Artificial Intelligence,” IJCAI’73, Proceedings of
the 3rd international joint conference on Artificial intelligence, pp.
235-245, 1973. https://www.ijcai.org/Proceedings/73/Papers/027B.pdf
Accessed on: August 22, 2022.

ZeroMQ, https://zeromq.org Accessed on: August 22, 2022.

A. Lebedevn. and A. Manafov, “DDS: The Dynamic
Deployment System,” EPJ Web Conf.,, vol.214, 01011, 2019.
https://doi.org/10.1051/epjconf/201921401011 Accessed on: August 22,
2022.

[3]

[4]

framework

[5]

[6]
[7]

[8]
[9]

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. XX, NO. XX, XXXX 2020

[10]
[11]

[12]
[13]

[14]

[15]

DDS, https://github.com/FairRootGroup/DDS Accessed on: August 22,
2022.

ODC, https://github.com/FairRootGroup/ODC Accessed on: August 22,
2022.

Grafana, https://grafana.com/ Accessed on: August 22, 2022.

T. N. Takahashi, et al, “Data acquisition system in the first
commissioning run of the J-PARC E16 experiment,” [EEE Trans.
Nucl. Sci., vol.68, no.8, pp.1907-1911, 2021. [Online] Available:
https://doi.rog/10.1109/TNS.2021.3087635 Accessed on: August 22,
2022.

K. Kasinski, et al., “Characterization of the STS/MUCH-XYTER?2,
a 128-channel time and amplitude measurement IC for gas and silicon
microstrip sensors,” Nucl. Instr. and Meth. A vol.908, pp. 225-235, 2018.
[Online] Available: https://doi.org/10.1016/j.nima.2018.08.076 Accessed
on: August 22, 2022.

R. Honda, et al., “Continuous timing measurement using a data stream-
ing DAQ system,” Prog. Theor. Exp. Phys., vol.2021, no.12, 123HO1.
[Online] Available: https://doi.org/10.1093/ptep/ptab128 Accessed on:
August 22, 2022.

