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Motivation

The DAQ system used in nuclear/hadron
physics experiments at J-PARC HEF

• Triggered DAQ with network-distributed
readout and event building

• Developed 10+ years ago for small- to
medium-scale experiments.
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Limitations for new experiments with high event and data rates

• The single endpoint event builder is the bottleneck.
• It is difficult to a develop complex trigger system (hardware and logic) with only a few

people in each group.

New DAQ software is needed.

• Load balance across multiple
endpoints to cope with high
event/data rates

• Flexible, used commonly in
several experiments

• Simple and low learning costs
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DAQ software

FairMQ

• State machine to execute a user task

• Data transport through ZeroMQ (, shared memory, InfiniBand)

• Few library dependencies

→ suitable for task processing with multiple endpoints
However, the official user interface of FairMQ is designed for a batch job system, not a
web-friendly UI suitable for DAQ.

Redis

• In-memory type Key-Value store
• Fast
• Various value types: strings, lists, hashes, ...
• Client libraries in many programming languages

• Message queue broker: controlling and monitoring state
machine

• Time series database: monitoring task/data flow

We have developed a DAQ software prototype on top of FairMQ
and Redis.
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FairMQ

• FairMQDevice
• A process to execute user task

• FairMQChannel (FairMQSocket)
• Data transportation between FairMQDevices

• FairLogger
• Log output levels, and destinations (consol, file, ...)

• Plugin
• Dynamically loadable library at process launch to

add a custom user interface
• Controls the state machine
• Configures parameters (program options)
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https://github.com/FairRootGroup/FairMQ
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FairMQ custom plugins using Redis client library

DAQ service

• Control and monitor state machines (Redis
message queue)

• Service discovery to easily configure
topology (Redis key-valu store) (→ next
slide)

Parameter config

• Alternative to command line input
parameters (Redis key-value store)

Metrics

• Monitoring states and data flow metrics
with Grafana dashboard (Redis time series
database)
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Service discovery

• We want to easily set up the topology configuration
for multiple endpoints even if the number of
endpoints grows.

• The following features are introduced:
• Redis as a service registry

• Register process presence with TTL (Time-To-Live),
information on connection (address, port

• The expiration of TTL is used to detect the abnormal
process termination.

• Simple rules to configure topology.
• service = a process group
• configure connection between services
→ generate configuration parameters of connections
between processes by using topology hint (1-1, 1-N,
N-1, N-M)

hint:
1-1 topology

hint:
1-1 topology

Service Registry

(database)

service=Sampler
id=Sampler-1

service=Sink
id=Sink-1

bind port XXXXX

IP 192.168.22.1
IP 192.168.22.11

Sampler:Sampler-1
IP=192.168.22.1
data-out
bind port XXXXX

register
Sink:Sink-1
IP=192.168.22.11
data-in
connect

register

data-out data-in

search in the registry
connet port

Typical topology in DAQ

1-1 (N parallel) 1-N
(broadcast, PUB-SUB)

1-N (static round robin) N-M
(static round robin)
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Example of topology configuration

• 4 services: TOF TdcSampler, TOF TimeFrameBuilder, TOF Filter, TOF FileSink
• Input parameters uploaded to Redis (= 9 lines of shell command of redis-cli)

• 6 endpoints between services
• 3 links between services

data-out
bind
N:M

data-in
connect
N:M

data-out
bind
N:M

data-out
connect
N:M

data-in
connect
N:M

data-in
bind
N:M

Service=TOF_TdcSampler Service=TOF_TimeFrameBuilder Service=TOF_Filter Service=TOF_FileSink

device=TdcSampler

id=TOF_TdcSampler-0

device=TdcSampler

id=TOF_TdcSampler-1

device=TimeFrameBLD

id=TOF_TFBLD-0

device=TimeFrameBLD

id=TOF_TFBLD-1

device=FileSink

id=TOF_FileSink-0

device=FileSink

id=TOF_FileSink-0

device=Filter

id=TOF_Filter-0

device=Filter

id=TOF_Filter-1

device=Filter

id=TOF_Filter-2

The topology parameters can remain the same even if the number of processes changes.
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Example of topology configuration

• 4 services: TOF TdcSampler, TOF TimeFrameBuilder, TOF Filter, TOF FileSink
• Input parameters uploaded to Redis (= 9 lines of shell command of redis-cli)

• 6 endpoints between services
• 3 links between services

data-out
bind
N:M

data-in
connect
N:M

data-out
bind
N:M

data-out
connect
N:M

data-in
connect
N:M

data-in
bind
N:M

Service=TOF_TdcSampler Service=TOF_TimeFrameBuilder Service=TOF_Filter Service=TOF_FileSink

device=TdcSampler

id=TOF_TdcSampler-0

device=TdcSampler

id=TOF_TdcSampler-1

device=TimeFrameBLD

id=TOF_TFBLD-0

device=TimeFrameBLD

id=TOF_TFBLD-1

device=FileSink

id=TOF_FileSink-0

device=FileSink

id=TOF_FileSink-0

device=Filter

id=TOF_Filter-0

device=Filter

id=TOF_Filter-1

device=Filter

id=TOF_Filter-2

The topology parameters can remain the same even if the number of processes changes.
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User interface

Controller UI

• Redis message queue (pub-sub)
• Simple JSON message

• Distribute commands to change state
• Collect responses

• Receive notifications of key expiration

• Direct redis-cli from terminal

• Web (HTML + Javascript + WebSocket)

http server

FairMQDevice

FairMQDevice

FairMQDevice

WebSocket

HTML
JavaScript

Plugin

Redis client

Metrics monitoring

• Redis TimeSeries + Grafana

• Process state, CPU load, RAM usage,
message rate
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Performance evaluation (1) : Setup

JLAN-intra

comet-eb02comet-eb01

10G optical

QNAP 10GbE SW
QSW-M1208-8C

• PC: Dell PowerEdge R740
• Xeon Gold 6126 @ 2.6 GHz, 12 Cores ×2
• RAM: 64GB RAM
• NIC: Intel X710-DA4

• OS: Scientific Linux 7.9

• Switch: QNAP 10GbE QSW-M1208-8C
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Performance evaluation (2) : Test environments

We measured the performance of:

• 2 different process deployments of ”1-n-1” (1-sampler ↔ N-workers ↔ 1-sink)
• ”On the PC”: All processes on one PC
• ”via network”: All worker processes on PC2, and the others on PC1

• 2 types of workloads
• ”w/o load”: Workers do nothing with the received data, act like FIFO.
• ”w/ load”: Workers run dummy workloads, shuffling the received payload for 1 msec.

Sampler
Dummy data 
generation

Sink

Worker-000

Worker-001

Worker-002

Worker-003

Worker-n

TCP/IP
PUSH/PULL

TCP/IP
PUSH/PULL

redis

Sampler

Sink

Worker-000

Worker-001

Worker-002

Worker-003

Worker-n

10GbE
TCP/IP
PUSH/PULL

redis

PC1

PC2

On the PC via network
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Performance evaluation (3) : Results for 1-n-1 data transfer

• In the measurements, event size was fixed to 50 KiB.

• The system was able to handle the input data rate up to the upper limit of the 10 GbE.
• Also confirmed: the controller software could manage at least 700 processes.
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Summary

• A prototype of streaming DAQ software has been developed for high event and/or data rate
experiments at J-PARC HEF.

• Easy to handle multiple endpoints
• Simple and low learning costs

• FairMQ and Redis were employed as the technical basis.
• Service discovery, controller

• Currently, static round robin load balancing is supported.

• Metrics monitoring
• Parameter configuration

• The performance of the software prototype was evaluated.
• It has scalability up to the network bandwidth of at least 10 GbE
• Also, the Redis-based controller can manage at least 700 processes.

Future work

• Performance evaluation with many processing nodes and realistic workloads is in progress.
• Development of applications for physics experiments

• J-PARC E16: triggered DAQ from 2020 → combined DAQ from 2023
• J-PARC E50: commissioning of detectors and streaming DAQ with a small setup in 2023
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Backup
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J-PARC hadron experimental facility (HEF)

• Particle and nuclear physics

• Intense beam of 𝑝, 𝐾 , 𝜋, 𝜇
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Hadron physics experiments at J-PARC high-p beam line

J-PARC E16 (ongoing experiment)
• Physics Hadron mass in medium

• Beam 30 GeV 5×109 protons/sec
• DAQ Triggered (+ streaming)

• Detector channels: 150,000
• Trigger channels: 2,600
• 10 MHz reaction → trigger rate: 1–2 kHz
• Data rate 1–3 GB/spill

As of Aug. 2022, ∼1/3 of full detectors are installed.

Only SSD electronics (XYTER2 of GSI-CBM) supports self-triggered readout.

J-PARC E50 (future experiment)
• Physics Diquark correlation through charmed

baryon spectroscopy

• Beam 20 GeV/𝑐, 30 M 𝜋− /sec
• DAQ Streaming

• Detector channels: 25,000
• Trigger channels: 5,000–25,000
• 1.5 MHz reaction → trigger rate: 10–20 kHz
• Data rate: 10–20 GB/spill (w/o trigger)
• Reduction by software filtering: 100-200 MB/spill
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