
Streaming DAQ software prototype at J-PARC hadron
experimental facility (HEF)

Tomonori TAKAHASHI (RIKEN)
Ryotaro Honda, Youichi Igarashi, Hiroshi Sendai
August 3rd, 2022
23rd Virtual IEEE Real Time Conference

1/15

Motivation

The DAQ system used in nuclear/hadron
physics experiments at J-PARC HEF

• Triggered DAQ with network-distributed
readout and event building

• Developed 10+ years ago for small- to
medium-scale experiments.

Sampler
(data reader)

Sink
(“read and drop” or
“read and record”)

Sampler

Sampler

Sampler

Sampler

Sampler

Sink

TCP
TCPEvent BuilderFEE

FEE

FEE

FEE

FEE

Monitor

FEE

Limitations for new experiments with high event and data rates

• The single endpoint event builder is the bottleneck.
• It is difficult to a develop complex trigger system (hardware and logic) with only a few

people in each group.

New DAQ software is needed.

• Load balance across multiple
endpoints to cope with high
event/data rates

• Flexible, used commonly in
several experiments

• Simple and low learning costs

Sampler

Sink
(“read and drop” or
“read and record”)

Sampler

Sampler

Sampler

Sampler

Sampler

STFB TFB Sink
STFB

STFB

STFB

STFB

TFB

TFB

TFB

TFB

Sink

Sink

 connection and round robin networkN:M

Several Sinks

FEE

FEE

FEE

FEE

FEE

FEE

Filter

Filter

Filter

Filter

Filter

Filter

(Sub-time Frame Builder) (Time Frame Builder)

TFBSTFB

2/15

DAQ software

FairMQ

• State machine to execute a user task

• Data transport through ZeroMQ (, shared memory, InfiniBand)

• Few library dependencies

→ suitable for task processing with multiple endpoints
However, the official user interface of FairMQ is designed for a batch job system, not a
web-friendly UI suitable for DAQ.

Redis

• In-memory type Key-Value store
• Fast
• Various value types: strings, lists, hashes, ...
• Client libraries in many programming languages

• Message queue broker: controlling and monitoring state
machine

• Time series database: monitoring task/data flow

We have developed a DAQ software prototype on top of FairMQ
and Redis.

Redis

FairMQ

Bo
os
t

Fa
irL
og
ge
r

Ze
ro
M
Q

DAQ

3/15

FairMQ

• FairMQDevice
• A process to execute user task

• FairMQChannel (FairMQSocket)
• Data transportation between FairMQDevices

• FairLogger
• Log output levels, and destinations (consol, file, ...)

• Plugin
• Dynamically loadable library at process launch to

add a custom user interface
• Controls the state machine
• Configures parameters (program options)

Sampler Processor

SinkMerger

Sampler Processor

FairMQDeviceFairMQDevice

FairMQDeviceFairMQDevice

FairMQDevice FairMQDevice

state machine

plugin

FairMQChannel

ProgOptions

user task

FairMQDevice

logger

State machine

https://github.com/FairRootGroup/FairMQ
4/15

https://github.com/FairRootGroup/FairMQ

FairMQ custom plugins using Redis client library

DAQ service

• Control and monitor state machines (Redis
message queue)

• Service discovery to easily configure
topology (Redis key-valu store) (→ next
slide)

Parameter config

• Alternative to command line input
parameters (Redis key-value store)

Metrics

• Monitoring states and data flow metrics
with Grafana dashboard (Redis time series
database)

state machine

DAQ service

FairMQChannel

ProgOptions

user task

FairMQDevice

logger

metricsparameter config

/proc/stat
/proc/self/stat

plugins

daq command

parametertopology

5/15

Service discovery

• We want to easily set up the topology configuration
for multiple endpoints even if the number of
endpoints grows.

• The following features are introduced:
• Redis as a service registry

• Register process presence with TTL (Time-To-Live),
information on connection (address, port

• The expiration of TTL is used to detect the abnormal
process termination.

• Simple rules to configure topology.
• service = a process group
• configure connection between services
→ generate configuration parameters of connections
between processes by using topology hint (1-1, 1-N,
N-1, N-M)

hint:
1-1 topology

hint:
1-1 topology

Service Registry

(database)

service=Sampler
id=Sampler-1

service=Sink
id=Sink-1

bind port XXXXX

IP 192.168.22.1
IP 192.168.22.11

Sampler:Sampler-1
IP=192.168.22.1
data-out
bind port XXXXX

register
Sink:Sink-1
IP=192.168.22.11
data-in
connect

register

data-out data-in

search in the registry
connet port

Typical topology in DAQ

1-1 (N parallel) 1-N
(broadcast, PUB-SUB)

1-N (static round robin) N-M
(static round robin)

6/15

Example of topology configuration

• 4 services: TOF TdcSampler, TOF TimeFrameBuilder, TOF Filter, TOF FileSink
• Input parameters uploaded to Redis (= 9 lines of shell command of redis-cli)

• 6 endpoints between services
• 3 links between services

data-out
bind
N:M

data-in
connect
N:M

data-out
bind
N:M

data-out
connect
N:M

data-in
connect
N:M

data-in
bind
N:M

Service=TOF_TdcSampler Service=TOF_TimeFrameBuilder Service=TOF_Filter Service=TOF_FileSink

device=TdcSampler

id=TOF_TdcSampler-0

device=TdcSampler

id=TOF_TdcSampler-1

device=TimeFrameBLD

id=TOF_TFBLD-0

device=TimeFrameBLD

id=TOF_TFBLD-1

device=FileSink

id=TOF_FileSink-0

device=FileSink

id=TOF_FileSink-0

device=Filter

id=TOF_Filter-0

device=Filter

id=TOF_Filter-1

device=Filter

id=TOF_Filter-2

The topology parameters can remain the same even if the number of processes changes.

7/15

Example of topology configuration

• 4 services: TOF TdcSampler, TOF TimeFrameBuilder, TOF Filter, TOF FileSink
• Input parameters uploaded to Redis (= 9 lines of shell command of redis-cli)

• 6 endpoints between services
• 3 links between services

data-out
bind
N:M

data-in
connect
N:M

data-out
bind
N:M

data-out
connect
N:M

data-in
connect
N:M

data-in
bind
N:M

Service=TOF_TdcSampler Service=TOF_TimeFrameBuilder Service=TOF_Filter Service=TOF_FileSink

device=TdcSampler

id=TOF_TdcSampler-0

device=TdcSampler

id=TOF_TdcSampler-1

device=TimeFrameBLD

id=TOF_TFBLD-0

device=TimeFrameBLD

id=TOF_TFBLD-1

device=FileSink

id=TOF_FileSink-0

device=FileSink

id=TOF_FileSink-0

device=Filter

id=TOF_Filter-0

device=Filter

id=TOF_Filter-1

device=Filter

id=TOF_Filter-2

The topology parameters can remain the same even if the number of processes changes.

7/15

User interface

Controller UI

• Redis message queue (pub-sub)
• Simple JSON message

• Distribute commands to change state
• Collect responses

• Receive notifications of key expiration

• Direct redis-cli from terminal

• Web (HTML + Javascript + WebSocket)

http server

FairMQDevice

FairMQDevice

FairMQDevice

WebSocket

HTML
JavaScript

Plugin

Redis client

Metrics monitoring

• Redis TimeSeries + Grafana

• Process state, CPU load, RAM usage,
message rate

8/15

Performance evaluation (1) : Setup

JLAN-intra

comet-eb02comet-eb01

10G optical

QNAP 10GbE SW
QSW-M1208-8C

• PC: Dell PowerEdge R740
• Xeon Gold 6126 @ 2.6 GHz, 12 Cores ×2
• RAM: 64GB RAM
• NIC: Intel X710-DA4

• OS: Scientific Linux 7.9

• Switch: QNAP 10GbE QSW-M1208-8C

9/15

Performance evaluation (2) : Test environments

We measured the performance of:

• 2 different process deployments of ”1-n-1” (1-sampler ↔ N-workers ↔ 1-sink)
• ”On the PC”: All processes on one PC
• ”via network”: All worker processes on PC2, and the others on PC1

• 2 types of workloads
• ”w/o load”: Workers do nothing with the received data, act like FIFO.
• ”w/ load”: Workers run dummy workloads, shuffling the received payload for 1 msec.

Sampler
Dummy data
generation

Sink

Worker-000

Worker-001

Worker-002

Worker-003

Worker-n

TCP/IP
PUSH/PULL

TCP/IP
PUSH/PULL

redis

Sampler

Sink

Worker-000

Worker-001

Worker-002

Worker-003

Worker-n

10GbE
TCP/IP
PUSH/PULL

redis

PC1

PC2

On the PC via network

10/15

Performance evaluation (3) : Results for 1-n-1 data transfer

• In the measurements, event size was fixed to 50 KiB.

• The system was able to handle the input data rate up to the upper limit of the 10 GbE.
• Also confirmed: the controller software could manage at least 700 processes.

11/15

Summary

• A prototype of streaming DAQ software has been developed for high event and/or data rate
experiments at J-PARC HEF.

• Easy to handle multiple endpoints
• Simple and low learning costs

• FairMQ and Redis were employed as the technical basis.
• Service discovery, controller

• Currently, static round robin load balancing is supported.

• Metrics monitoring
• Parameter configuration

• The performance of the software prototype was evaluated.
• It has scalability up to the network bandwidth of at least 10 GbE
• Also, the Redis-based controller can manage at least 700 processes.

Future work

• Performance evaluation with many processing nodes and realistic workloads is in progress.
• Development of applications for physics experiments

• J-PARC E16: triggered DAQ from 2020 → combined DAQ from 2023
• J-PARC E50: commissioning of detectors and streaming DAQ with a small setup in 2023

12/15

Backup

13/15

J-PARC hadron experimental facility (HEF)

• Particle and nuclear physics

• Intense beam of 𝑝, 𝐾 , 𝜋, 𝜇

14/15

Hadron physics experiments at J-PARC high-p beam line

J-PARC E16 (ongoing experiment)
• Physics Hadron mass in medium

• Beam 30 GeV 5×109 protons/sec
• DAQ Triggered (+ streaming)

• Detector channels: 150,000
• Trigger channels: 2,600
• 10 MHz reaction → trigger rate: 1–2 kHz
• Data rate 1–3 GB/spill

As of Aug. 2022, ∼1/3 of full detectors are installed.

Only SSD electronics (XYTER2 of GSI-CBM) supports self-triggered readout.

J-PARC E50 (future experiment)
• Physics Diquark correlation through charmed

baryon spectroscopy

• Beam 20 GeV/𝑐, 30 M 𝜋− /sec
• DAQ Streaming

• Detector channels: 25,000
• Trigger channels: 5,000–25,000
• 1.5 MHz reaction → trigger rate: 10–20 kHz
• Data rate: 10–20 GB/spill (w/o trigger)
• Reduction by software filtering: 100-200 MB/spill

15/15

