
KIT – The Research University in the Helmholtz Association

Split Boot - True network-based booting on heterogeneous MPSoCs
Marvin Fuchs*, Luis E. Ardila-Perez, Torben Mehner, Oliver Sander 23rd Virtual IEEE Real Time Conference, August 2022
marvin.fuchs@kit.edu

Implementation

Summary
● A mechanism was designed to allow us to fetch all application-specific data

during the boot process of a Zynq UltraScale+ device from a remote location.
● U-Boot was extended to be able to modify the configuration of the PS as well as

the isolation configuration via the PMU.
● The Python tool PSU Configuration Generator was created to extract the

information needed to update the configuration of the PS as well as the isolation
configuration out of two *.xsa archives.

1

2The Idea: Split Boot

The approach of the Split Boot is to remove the configuration data for the PS from the
FSBL, because this is the only application-specific information that usually has to be
stored in the local boot medium [3] [4].
● The configuration data in the FSBL is replaced by a generic configuration to allow

the boot process to continue beyond the FSBL.
● The generic configuration will be replaced with application specific data later in the

boot process.
All the application-specific information can now be fetched from the network.
This is especially useful for deployment und updates in distributed large-scale systems.

4

5

References
[1] Zynq UltraScale+ Device Technical Reference Manual. Version 2.2. Xilinx. December 4
2020, S. 237–247. url: https://docs.xilinx.com/v/u/en-US/ug1085-zynq-ultrascale-trm

[2] Zynq UltraScale+ MPSoC Software Developers Guide. Version 2020.2. Xilinx. January 5
2021,url: https://docs.xilinx.com/r/en-US/ug1137-zynq-ultrascale-mpsoc-swdev

[3] M. Fuchs, Hochintegriertes Plattform Management auf heterogenen SoC Architekturen,
June 18 2021

[4] L. Ardila Pérez, Low-latency track triggering in high-energy physics, May 21 2022, DOI:
10.5445/IR/1000145595

[5] L. Ardila Pérez et. al., ZynqMP-based Board Management Mezzanines for the Serenity
ATCA Blades, 2nd System-on-Chip Workshop - CERN, June 07-11 2021

[6] M. Fuchs et. al., Kria, Split Boot and beyond – An Update of the Serenity group's ZynqMP
activities, CERN SoC Interest Group Meeting, May 3 2022

Default Boot Process for Xilinx Zynq UltraScale+
Xilinx Zynq UltraScale+ devices provide a highly configure heterogeneous MPSoC
architecture and are equipped on the software side with an equally customizable boot
process [1].
The task of the boot process is to initialize the
individual components of the architecture and the
interfaces between them according to the given
application.
● The process is subdivided into multiple software

layers that are started sequentially.
● Many of the layers can be customized by the user

with varying degrees of effort.
● A limited number of tasks can be moved between

layers (e.g. loading the bit file to the PL).
The downside of the standard process is that the First
Stage Boot Loader (FSBL) contains application-specific
configuration data and must be stored on the local boot
medium. This leads to a big effort for installation and
updates ZynqMP devices in large distributed systems.

The example boot process shown uses a generic boot image
stored locally to start and fetches all application-specific
information at runtime from a network location.
1. The FSBL writes a generic configuration into the configuration

registers of the PS [2] [3] [5].
2. The FSBL starts the ATF and the AFT starts U-Boot.
3. U-Boot fetches the bit file for the PL, the Linux Kernel, the

application-specific configuration for the PS, and the isolation
configuration, if any, from the network.

4. U-Boot was extended to be able to use the PMU to apply the
new configuration to the PS. Only some resources used by
U-Boot itself cannot be reconfigured.

5. U-Boot loads the bit file into the PL, then employs the PMU to
configure and activate the isolation configuration in the PS
before launching the Linux Kernel.

6. After this, the system is fully configured and behaves as usual.

3Creation of remotely stored files

Two additional configuration files (psu_config.bin and en_isolation.bin) are created
to store the application specific configuration of the PS in a network location [3] [5] [6].
● The python tool PSU Configuration Generator was created to extract the

necessary information on what to change in the configuration of the PS in U-Boot.
● The information is stored in a binary format that can be efficiently handled in

U-Boot.
Furthermore, the Linux Kernel image.ub and the bit file pl.bit are also created to be
stored in a remote location.
All the data that needs to be stored locally is combined in the file BOOT.bin.

[1] [2]
[2]

mailto:marvin.fuchs@kit.edu

